Surface chemistry of graphene tailoring the activity of digestive enzymes by modulating interfacial molecular interactions.

J Colloid Interface Sci

Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Nephrology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523125, Guangdong, China. Electronic address:

Published: January 2023

As a kind of novel functional material, graphene-related nanomaterials (GRMs) have great potentials in industrial and biomedical applications. Meanwhile, the production and wide application of GRMs will increase the risk of unintended or intentional oral exposure to human beings, attracting safety concerns about their biological fates and toxicological effects. The normal enzymatic activity of digestive enzymes is essential for the proper functioning of the gastrointestinal tract system. However, whether and how orally entered GRMs and their surface groups affect digestive enzymes' activity are still scarce. In this paper, we systematically studied the effects of graphene oxide (GO), graphene modified with hydroxyl groups (OH-G), carboxyl groups (COOH-G), and amino groups (NH-G) on enzymatic activity of three typical digestive enzymes (pepsin, trypsin, and α-pancreatic amylase). The results showed that the activity of trypsin and α-pancreatic amylase could be greatly changed after GRMs incubation in a surface chemistry dependent manner, while the activity of pepsin was not affected. To elucidate the mechanisms at the molecular level, the interactions between trypsin and GRMs were studied by spectrometry, thermophoresis, and computational simulation approaches, and the key roles of surface chemistry of GRMs in tailoring the activity of trypsin were finally figured out. GO allosterically inhibited trypsin's activity in the non-competitive manner because of the conformation transition induced by the intensive interactions. COOH-G could effectively hamper enzymatic activity of trypsin in the competitive manner by blocking the active catalytic pocket. As for NH-G and OH-G, they had little impact on the activity of trypsin due to the weak binding affinity or limited conformational change. Our findings not only indicate surface chemistry plays an important role in tailoring the effects of GRMs on the activity of digestive enzymes but also provide new insights for understanding the oral safety of nanomaterials from daily products and the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.10.030DOI Listing

Publication Analysis

Top Keywords

surface chemistry
16
digestive enzymes
16
activity trypsin
16
activity digestive
12
enzymatic activity
12
activity
11
tailoring activity
8
trypsin α-pancreatic
8
α-pancreatic amylase
8
grms
7

Similar Publications

Electronic circular dichroism (ECD) spectra contain key information about molecular chirality by discriminating the absolute configurations of chiral molecules, which is crucial in asymmetric organic synthesis and the drug industry. However, existing predictive approaches lack the consideration of ECD spectra owing to the data scarcity and the limited interpretability to achieve trustworthy prediction. Here we establish a large-scale dataset for chiral molecular ECD spectra and propose ECDFormer for accurate and interpretable ECD spectrum prediction.

View Article and Find Full Text PDF

Amino acid modified copper-based metal organic polyhedral with higher peroxidase activity for potassium guaiacol sulfonate detection.

Sci Rep

January 2025

School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming, China.

It has been reported some nanozymes could be used as a substitute for natural enzyme to detect HO to some extent. However, the low catalytic effect of these materials limited their further application fields. Hence, to increase the catalytic activity of nanozymes was a hot research topic and many methods have been reported.

View Article and Find Full Text PDF

Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.

View Article and Find Full Text PDF

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF

Molecular basis of proton sensing by G protein-coupled receptors.

Cell

December 2024

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:

Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!