Light-driven micromotors that can be remotely controlled by irradiation have environmental remediation applications. Herein, we describe a facile one-step hydrothermal method for synthesizing visible-light-driven heterogeneous micromotors by simultaneously depositing photocatalytic g-CN and magnetic FeO nanoparticles on kapok fiber (KF) templates (g-CN-FeO@KF). These microdevices exhibit precisely controlled motion in the presence of hydrogen peroxide (HO) under visible light via a bubble recoil mechanism. The present g-CN-FeO@KF units display-two simultaneous locomotion modes: linear and self-rotation. The velocity of these micromotors can be controlled by multiple approaches, such as by changing the HO concentration or visible light intensity. The photocatalytic propulsion of these microdevices can be conveniently switched on or off by regulating the incident light. As a proof-of-concept, g-CN-FeO@KF micromotors were applied to the degradation of Rhodamine B (RhB). On the basis of a combination of photocatalytic Fenton oxidation and enhanced micro-mixing/mass transfer in the solution induced by self-propulsion and self-rotation, these g-CN-FeO@KF micromotors enable much more efficient degradation of RhB compared with stationary systems. The magnetic nature of this material additionally allows convenient collection and recycling of the micromotors. The synthesis process can be easily scaled up and therefore may have the potential to fabricate self-propelled micromotors for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.10.021 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China. Electronic address:
Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
Mechanical force attracts booming attention with the potential to tune the tumor cell behavior, especially in cell migration. However, the current approach for introducing mechanical input is difficult to apply in vivo. How the mechanical force affects cell behavior in situ also remains unclear.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, China.
There has been considerable interest in the recent advances in synthetic micro/nanomotors in diverse biofluids due to their potential biomedical applications. However, the propulsion of existing micro/nanomotor platforms for delivery in the gastrointestinal (GI) tract is inefficient. Herein, we present a magnetically and chemically actuated micromotor-tableted pill that can be actively retained in the GI tract .
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Oral Implant Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Dentin hypersensitivity is primarily caused by the exposure of dentinal tubules due to various factors, so the key to treatment is to effectively seal these exposed tubules. However, traditional dentinal tubule sealants used in clinical practice often fail to adhere securely to the tubule surface when exposed to external stimuli, resulting in a recurrence of sensitivity. In this study, we developed a silicon micromotor that moved autonomously and loaded with silver nanoparticles and a photosensitive adhesive for dentin sensitivity therapy.
View Article and Find Full Text PDFInt J Pharm
February 2025
Clinical Center for Tumor Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China. Electronic address:
The therapeutic outcomes of medications were restricted by the colonic mucosal barrier during the treatment of colorectal cancer (CRC). Micro/nanomotors can overcome the mucus barriers to reach deep colorectal tumors. In this study, we constructed a novel microsized PLGA-Pt micromotor (MM) driven by hydrogen peroxide (HO) to enhance drug delivery to the CRC tissues and achieve effective antitumor therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!