A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Harnessing insect olfactory neural circuits for detecting and discriminating human cancers. | LitMetric

Harnessing insect olfactory neural circuits for detecting and discriminating human cancers.

Biosens Bioelectron

Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA. Electronic address:

Published: January 2023

There is overwhelming evidence that presence of cancer alters cellular metabolic processes, and these changes are manifested in emitted volatile organic compound (VOC) compositions of cancer cells. Here, we take a novel forward engineering approach by developing an insect olfactory neural circuit-based VOC sensor for cancer detection. We obtained oral cancer cell culture VOC-evoked extracellular neural responses from in vivo insect (locust) antennal lobe neurons. We employed biological neural computations of the antennal lobe circuitry for generating spatiotemporal neuronal response templates corresponding to each cell culture VOC mixture, and employed these neuronal templates to distinguish oral cancer cell lines (SAS, Ca9-22, and HSC-3) vs. a non-cancer cell line (HaCaT). Our results demonstrate that three different human oral cancers can be robustly distinguished from each other and from a non-cancer oral cell line. By using high-dimensional population neuronal response analysis and leave-one-trial-out methodology, our approach yielded high classification success for each cell line tested. Our analyses achieved 76-100% success in identifying cell lines by using the population neural response (n = 194) collected for the entire duration of the cell culture study. We also demonstrate this cancer detection technique can distinguish between different types of oral cancers and non-cancer at different time-matched points of growth. This brain-based cancer detection approach is fast as it can differentiate between VOC mixtures within 250 ms of stimulus onset. Our brain-based cancer detection system comprises a novel VOC sensing methodology that incorporates entire biological chemosensory arrays, biological signal transduction, and neuronal computations in a form of a forward-engineered technology for cancer VOC detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114814DOI Listing

Publication Analysis

Top Keywords

cancer detection
16
cell culture
12
cancer
9
insect olfactory
8
olfactory neural
8
oral cancer
8
cell
8
cancer cell
8
antennal lobe
8
neuronal response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!