Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The abuse of enrofloxacin (ENR) in aquaculture and the lack of monitoring of other metabolites except ciprofloxacin (CIP) may lead to unknown harmful effects on human health. In this study, ENR metabolites were screened in real fish samples based on ultrahigh-performance liquid chromatography coupled with Q-Orbitrap mass spectrometry combined with Compound Discoverer software, and another metabolite deethylene-ENR besides CIP was detected and identified for the first time. Correspondingly, a method for the determination of ENR and CIP and the semi-quantitative analysis of deethylene-ENR in aquatic products was established. Method validation illustrated that excellent linearity and satisfactory recoveries of analytes were obtained. Limits of detection of ENR and CIP were both 0.1 μg kg, and their limits of quantification both 1 μg kg. CIP and deethylene-ENR were detected in 12 of 14 ENR-positive fish samples, so deethylene-ENR should be of concern as a possible risk candidate in aquatic products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.134757 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!