The gut microbiome of wild American marten in the Upper Peninsula of Michigan.

PLoS One

Michigan Department of Natural Resources, Marquette, Michigan, United States of America.

Published: November 2022

Carnivores are ecologically important and sensitive to habitat loss and anthropogenic disruption. Here we measured trophic level and gut bacterial composition as proxies of carnivore ecological status across the Upper Peninsula, Michigan, for wild American marten (Martes americana; hereafter marten). In contrast to studies that have focused on omnivorous and herbivorous species, we find that marten, like other carnivore species without a cecum, are dominated by Firmicutes (52.35%) and Proteobacteria (45.31%) but lack Bacteroidetes. Additionally, a majority of the 12 major bacterial genera (occurring at ≥1%) are known hydrogen producers, suggesting these taxa may contribute to host energy requirements through fermentative production of acetate. Our study suggests that live trapping and harvest methods yield similar marten gut microbiome data. In addition, preserving undisturbed forest likely impacts marten ecology by measurably increasing marten trophic level and altering the gut microbiome. Our study underscores the utility of the gut microbiome as a tool to monitor the ecological status of wild carnivore populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632765PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275850PLOS

Publication Analysis

Top Keywords

gut microbiome
16
wild american
8
american marten
8
upper peninsula
8
peninsula michigan
8
trophic level
8
ecological status
8
marten
7
gut
5
microbiome wild
4

Similar Publications

Sphingolipids are an essential lipid component of the skin barrier with alterations in skin sphingolipid composition associated with multiple skin disorders including psoriasis, atopic dermatitis, and ichthyosis. Contributions to skin sphingolipid abundance are not well characterized, thus the main method of modulating skin lipid levels is the topical application of creams rich with sphingolipids at the skin surface. Evidence that diet and gut microbiome function can alter skin biology proposes an intriguing potential for the modulation of skin lipid homeostasis through gut microbial metabolism, but potential mechanisms of action are not well understood.

View Article and Find Full Text PDF

The metabolism of steroids by the gut microbiome affects hormone homeostasis, impacting host development, mental health, and reproductive functions. In this study, we identify the Δ -3-ketosteroid 5β-reductase, 3β-hydroxysteroid dehydrogenase/Δ isomerase, and Δ -3-ketosteroid reductase enzyme families encoded by common human gut bacteria. Through phylogenetic reconstruction and mutagenesis, We show that 5β-reductase and Δ -3-ketosteroid reductase have evolved to specialize in converting diverse 3-keto steroid hormones into their 5β- and Δ -reduced derivatives.

View Article and Find Full Text PDF

Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes.

View Article and Find Full Text PDF

Captivity Reduces Diversity and Shifts Composition of the Great Bustard () Microbiome.

Ecol Evol

January 2025

Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui China.

Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard () is a globally recognized endangered bird species.

View Article and Find Full Text PDF

Gut microbiota are fundamental for healthy animal function, but the evidence that host function can be predicted from microbiota taxonomy remains equivocal, and natural populations remain understudied compared to laboratory animals. Paired analyses of covariation in microbiota and host parameters are powerful approaches to characterise host-microbiome relationships mechanistically, especially in wild populations of animals that are also lab models, enabling insight into the ecological basis of host function at molecular and cellular levels. The fruitfly is a preeminent model organism, amenable to field investigation by 'omic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!