The detection and segmentation of stained cells and nuclei are essential prerequisites for subsequent quantitative research for many diseases. Recently, deep learning has shown strong performance in many computer vision problems, including solutions for medical image analysis. Furthermore, accurate stereological quantification of microscopic structures in stained tissue sections plays a critical role in understanding human diseases and developing safe and effective treatments. In this article, we review the most recent deep learning approaches for cell (nuclei) detection and segmentation in cancer and Alzheimer's disease with an emphasis on deep learning approaches combined with unbiased stereology. Major challenges include accurate and reproducible cell detection and segmentation of microscopic images from stained sections. Finally, we discuss potential improvements and future trends in deep learning applied to cell detection and segmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3213407DOI Listing

Publication Analysis

Top Keywords

detection segmentation
20
deep learning
20
nuclei detection
8
unbiased stereology
8
learning approaches
8
cell detection
8
detection
5
segmentation
5
deep
5
learning
5

Similar Publications

In this study, the kidneys of ground squirrels (hibernated and nonhibernated), rabbits, and rats were examined macro and microanatomically. Kidney morphology was investigated by stereo microscopy, light microscopy, and scanning electron microscopy. Triple and immunohistochemical staining were performed for light microscopic examinations.

View Article and Find Full Text PDF

Biofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by Pseudomonas aeruginosa with high accuracy.

View Article and Find Full Text PDF

The application of deep learning in early enamel demineralization detection.

PeerJ

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Objective: The study aims to develop a diagnostic model using intraoral photographs to accurately detect and classify early detection of enamel demineralization on tooth surfaces.

Methods: A retrospective analysis was conducted with 208 patients aged 14 to 44. A total of 624 high-quality digital images captured under standardized conditions were used to construct a deep learning model based on the Mask region-based convolutional neural network (Mask R-CNN).

View Article and Find Full Text PDF

Subcellular Spatial Transcriptomics (SST) represents an innovative technology enabling researchers to investigate gene expression at the subcellular level within tissues. To comprehend the spatial architecture of a given tissue, cell segmentation plays a crucial role in attributing the measured transcripts to individual cells. However, existing cell segmentation methods for SST datasets still face challenges in accurately distinguishing cell boundaries due to the varying characteristics of SST technologies.

View Article and Find Full Text PDF

Background: The outcome of coronary artery bypass grafting (CABG) depends on several factors, including the quality of the distal anastomoses to the coronary arteries. Early graft failure may be caused by, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!