Objective: Nucleotide-binding and oligomerization domain (NOD)-like receptor family CARD domain-containing protein 4 (NLRC4) has a critical role in the regulation of interleukin-1β (IL-1β), an important cytokine in the pathogenesis of the periodontal diseases. In this study, we aimed to evaluate levels of salivary NLRC4 inflammasomes in different periodontal clinical statuses.

Methods: The individuals with 20 periodontally healthy (healthy), 20 gingivitis, and 20 periodontitis were periodontally examined. Saliva samples were collected, after the clinical measurements (plaque index, gingival index, gingival bleeding index, probing depth, and clinical attachment level). The levels of salivary NLRC4, IL-1β, and interleukin 10 (IL-10) were examined by enzyme-linked immunosorbent assay.

Results: The results demonstrated that levels of salivary NLRC4 (p < 0.01), and IL-1β (p < 0.001) were significantly higher in gingivitis and periodontitis than in the healthy group. No significant difference was salivary IL-10 levels between the groups (p > 0.05). Positive significant correlations among NLRC4 and IL-1β salivary levels and clinical parameters were detected (p < 0.05).

Conclusion: The findings of this study suggest that the NLRC4 is elevated in periodontal disease. Larger randomized controlled clinical studies are needed to use salivary NLRC4 levels as a potential marker for detecting the presence and/or severity of the periodontal disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/odi.14424DOI Listing

Publication Analysis

Top Keywords

levels salivary
12
salivary nlrc4
12
periodontal clinical
8
nlrc4
5
salivary
4
salivary levels
4
levels nlrc4
4
nlrc4 inflammasome
4
inflammasome periodontal
4
clinical
4

Similar Publications

SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease.

View Article and Find Full Text PDF

4D-DIA Proteomics Uncovers New Insights into Host Salivary Response Following SARS-CoV-2 Omicron Infection.

J Proteome Res

January 2025

PPGEMN, School of Engineering, Mackenzie Presbyterian University & MackGraphe - Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São Paulo 01302-907, Brazil.

Since late 2021, Omicron variants have dominated the epidemiological scenario as the most successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineages, driving new and breakthrough infections globally over the past two years. In this study, we investigated for the first time the host salivary response of COVID-19 patients infected with Omicron variants (BA.1, BA.

View Article and Find Full Text PDF

Objectives: Head and neck malignancies (HNMs) encompass a variety of cancers that affect the oral and para-oral tissues, the most common of which are squamous cell carcinomas. Radiotherapy is commonly used to treat these cancers, often involving radiation exposure to the salivary glands. This study aims to investigate the early impacts of radiotherapy on the internal microstructure of the salivary gland cells and identify which gland exhibits the highest level of radiosensitivity.

View Article and Find Full Text PDF

There is a lack of objective indicators to evaluate the treatment effect of burning mouth syndrome, a neuropathic pain of unknown causes. Therefore, this study aimed to evaluate potential salivary biomarkers by analyzing saliva before and after clonazepam treatment in patients with burning mouth syndrome. Saliva was collected from 23 patients with burning mouth syndrome before and 4 weeks after the topical administration of clonazepam.

View Article and Find Full Text PDF

Bioactive materials and biosensing technologies are emerging as pivotal tools in the early detection and management of oral cancer, a disease characterized by high morbidity and mortality rates. Recent advancements in nanotechnology have facilitated the development of innovative biosensors that utilize bioactive materials for non-invasive diagnostics, particularly through salivary analysis. These biosensors, including electrochemical, optical, and molecular types, target specific biomarkers such as DNA, RNA, and proteins associated with oral cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!