The inflammasome in biomaterial-driven immunomodulation.

J Tissue Eng Regen Med

i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.

Published: December 2022

Inflammasomes are intracellular structures formed upon the assembly of several proteins that have a considerable size and are very important in innate immune responses being key players in host defense. They are assembled after the perception of pathogens or danger signals. The activation of the inflammasome pathway induces the production of high levels of the pro-inflammatory cytokines Interleukin (IL)-1β and IL-18 through the caspase activation. The procedure for the implantation of a biomaterial causes tissue injury, and the injured cells will secrete danger signals recognized by the inflammasome. There is growing evidence that the inflammasome participates in a number of inflammatory processes, including pathogen clearance, chronic inflammation and tissue repair. Therefore, the control of the inflammasome activity is a promising target in the development of capable approaches to be applied in regenerative medicine. In this review, we revisit current knowledge of the inflammasome in the inflammatory response to biomaterials and point to the yet underexplored potential of the inflammasome in the context of immunomodulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092308PMC
http://dx.doi.org/10.1002/term.3361DOI Listing

Publication Analysis

Top Keywords

danger signals
8
inflammasome
7
inflammasome biomaterial-driven
4
biomaterial-driven immunomodulation
4
immunomodulation inflammasomes
4
inflammasomes intracellular
4
intracellular structures
4
structures formed
4
formed assembly
4
assembly proteins
4

Similar Publications

Endocrine-disrupting chemical, methylparaben, in environmentally relevant exposure promotes hazardous effects on the hypothalamus-pituitary-thyroid axis.

Mol Cell Endocrinol

December 2024

Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil. Electronic address:

Methylparaben (MP) belongs to the paraben class and is widely used as a preservative in personal care products, medicines, and some foods. MP acts as an endocrine disrupting chemical (EDC) on the hypothalamic-pituitary-thyroid (HPT) axis. However, the effects of MP have not yet been completely elucidated, as published results are scarce and controversial.

View Article and Find Full Text PDF

During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity.

View Article and Find Full Text PDF

Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death.

View Article and Find Full Text PDF

is one of the most dangerous and contagious foodborne pathogens, posing a significant threat to public health and food safety. In this study, we developed a click chemistry-based fluorescence biosensing platform for highly sensitive detection of () by integrating the -cleavage activity of CRISPR/Cas12a with the CLICK17-mediated copper(II)-dependent azide-alkyne cycloaddition (Cu(II)AAC) click reaction. Herein, CLICK-17 can provide binding sites for Cu ions and high redox stability for one or much catalytically vital Cu within its active sites, which facilitate the click reaction.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) is a prevalent chronic disease that is becoming increasingly common worldwide and can lead to a number of dangerous complications. The Wnt signaling pathway is important for the onset and progression of diabetes. Wnt3a is a typical Wnt ligand that can increase the stability of β-catenin, control TCF7L2 expression, promote β-cell proliferation, and reduce apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!