The groundwater is very precious in the world. Rapid urbanization and industrialization create tremendous stress on groundwater quality and quantity. Unscientific groundwater extraction and waste disposal methods impact the groundwater aquifer's susceptibility in the coastal area. This research examines how industrial waste, seawater intrusion, and solid waste dumping affect the Thoothukudi District, located on the southwest coast of Tamil Nadu, India. The groundwater vulnerability potential is determined using the DRASTIC and analytical hierarchy process (AHP)-based DRASTIC model. DRASTIC-AHP method's weights and ranks are determined using multi-criteria decision analysis (MCDA)-based pairwise comparison method. Remote sensing (RS) and geographical information system (GIS) are implemented to prepare the input layers for DRASTIC and DRASTIC-AHP. The findings reveal a very high category of vulnerability along the coastline that is covered in sand and loose sediments from an aquifer. Similar conditions exist on the southeast side, which is covered with gravel, sand, and sandstone with shale and has relatively low-slope topography. This enables higher contaminant percolation into the groundwater and raises the possibility for pollution. The DRASTIC-AHP method's results reveal that the southeast side has a significant possibility of contamination. The water table, net recharge, vadose zone, and conductivity greatly impacted the DRASTIC vulnerability assessment due to their stronger weight than theoretical weight. It may be stated that the DRASTIC technique is more cost-effective and time-efficient in analyzing a wide range of regional groundwater risks while avoiding sloppy, uncontrolled land development and other unwanted activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-022-10601-y | DOI Listing |
J Environ Manage
January 2025
Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA. Electronic address:
The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Earth Sciences, University of Oregon, Eugene, OR 97403.
Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.
Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
Warming associated with climate change is driving poleward shifts in the marine habitat of anadromous Pacific salmon ( spp.). Yet the spawning locations for salmon to establish self-sustaining populations and the consequences for the ecosystem if they should do so are unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!