Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A popular substance in the MXene family, titanium carbide (TiCT), has received substantial attention mainly due to its high metallic conductivity, easy solution processability, and environment friendliness. However, the poor oxygen resistance nature of MXene has prevented its practical applications from being realized. Despite significant attempts to improve the oxidative stability of MXenes, a comprehensive understanding of the oxidation mechanism is still elusive, thus leaving an optimal strategy for recycling oxidized MXene in question. Here, by developing a facile hydrofluoric acid (HF) post-treatment, we have unraveled the regeneration kinetics of the oxidized TiCT. A systematic and extensive investigation using a combination of Raman spectroscopy, scanning electron microscopy, X-ray diffractometer, and X-ray photoelectron spectroscopy revealed that HF post-treatment is critical for restoring the structure/morphology and surface composition of MXene nanosheets. These are ascribed to the oxidizing agent removal kinetics, while the generation of amorphous carbon and Ti(III) in fluorinated derivatives provides efficient electrical conductivity. Our findings suggested that HF post-treatment is sufficient to evade and reduce the degradation process while maintaining the conductivity for a longer time, which will not only be economically advantageous but also a step forward for the rational design of TiCT-based devices and functional coatings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c13993 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!