Immunotherapy for lung cancer combining the oligodeoxynucleotides of TLR9 agonist and TGF-β2 inhibitor.

Cancer Immunol Immunother

Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China.

Published: May 2023

Tumor immunotherapies have shown promising antitumor effects, especially immune checkpoint inhibitors (ICIs). However, only 12.46% of the patients benefit from the ICIs, the rest of them shows limited effects on ICIs or even accelerates the tumor progression due to the lack of the immune cell infiltration and activation in the tumor microenvironment (TME). In this study, we administrated a combination of Toll-like receptor 9 (TLR9) agonist CpG ODN and Transforming growth factor-β2 (TGF-β2) antisense oligodeoxynucleotide TIO3 to mice intraperitoneally once every other day for a total of four injections, and the first injection was 24 h after LLC cell inoculation. We found that the combination induced the formation of TME toward the enrichment and activation of CD8 T cells and NK cells, accompanied with a marked decrease of TGF-β2. The combined therapy also effectively inhibited the tumor growth and prolonged the survival of the mice, even protected the tumor-free mice from the tumor re-challenge. Both of CpG ODN and TIO3 are indispensable, because replacing CpG ODN with TLR9 inhibitor CCT ODN showed no antitumor effect, CpG ODN or TIO3 alone did not lead to ideal antitumor results. This effect was possibly initiated by the activation of dendritic cells at the tumor site. This systemic antitumor immunotherapy with a combination of the two oligonucleotides (an immune stimulant and an immunosuppressive cytokine inhibitor) before the tumor formation may provide a novel strategy for clinical prevention of the postoperative tumor recurrence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992143PMC
http://dx.doi.org/10.1007/s00262-022-03315-0DOI Listing

Publication Analysis

Top Keywords

cpg odn
16
tlr9 agonist
8
tumor
8
inhibitor tumor
8
odn
5
immunotherapy lung
4
lung cancer
4
cancer combining
4
combining oligodeoxynucleotides
4
oligodeoxynucleotides tlr9
4

Similar Publications

Evaluation of a nanostructured CpG-ODN/ascorbyl palmitate as a safe and effective adjuvant for anticrotalic PLA2 serum.

Trans R Soc Trop Med Hyg

January 2025

Conse jo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), CP3400 Corrientes, Argentina.

Background: The WHO states that antivenom is the only safe and effective treatment to neutralize snake venom. Snakebite antivenom typically involves horse hyperimmunization with crude venom and Freund's adjuvant.

Methods: In the current work, we analyzed the ascorbyl palmitate liquid crystal structure with snake protein or PLA2, the carrier charge capacity, and we evaluated the immune response induced by the enzyme P9a(Cdt-PLA2) formulated in a nanostructure using CpG-ODN, determining the titer of IgG antibodies.

View Article and Find Full Text PDF

Allergen immunotherapy (AIT) is currently the most effective immunologic form of treatment for patients with atopic allergic diseases commonly used by allergist/immunologists to reduce allergic symptoms by gradually desensitizing the immune system to specific allergens. Currently, the primary mechanism of AIT emphasizes the crucial role of immune regulation, which involves a shift from a T-helper type 2 (Th2) cell response, which promotes allergy, to a T-regulatory (Treg) cell population, which inhibits the allergic inflammatory response through the production of immunosuppressive cytokines interleukin 10 and transforming growth factor β, which play pivotal roles in suppressing the allergic reaction. In a series of previous in vitro and in vivo experiments, we have demonstrated the capacity of synthetic methylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) moieties as well as methylated genomic DNA ODN motifs from Bifidobacterium longum subspecies infantis to activate Treg cell differentiation in contrast to the unmethylated ODN moiety, which promotes proinflammatory responses driven by Th17-mediated responses.

View Article and Find Full Text PDF

Personalized Multi-Epitope Nanovaccine Unlocks B Cell-Mediated Multiple Pathways of Antitumor Immunity.

Adv Mater

December 2024

State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

B lymphocytes have emerged as an important immune-regulating target. Inoculation with tumor cell membrane-derived vaccines is a promising strategy to activate B cells, yet their efficiency is limited due to lack of costimulatory molecules. To amplify B cell responses against tumor, herein, a spatiotemporally-synchronized antigen-adjuvant integrated nanovaccine, termed as CM-CpG-aCD40, is constructed by conjugating the immune stimulative CpG oligonucleotide and the anti-CD40 antibody (aCD40) onto the membrane vesicles derived from triple negative breast cancer cells.

View Article and Find Full Text PDF

Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro.

View Article and Find Full Text PDF

Unleashing the role of potential adjuvants in leishmaniasis.

Int J Pharm

December 2024

Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India. Electronic address:

Leishmaniasis is amongst one of the most neglected tropical disease, caused by an intracellular protozoan of genus Leishmania. Currently, the most promising strategy to combat leishmaniasis, relies on chemotherapy but the toxicity and increasing resistance of the standard drugs, presses the demand for new alternatives. Immunization is arguably the best strategy for cure because an individual once infected becomes immune to the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!