A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Astrocyte reactivity in the glia limitans superficialis of the rat medial prefrontal cortex following sciatic nerve injury. | LitMetric

Astrocyte reactivity in the glia limitans superficialis of the rat medial prefrontal cortex following sciatic nerve injury.

Histochem Cell Biol

Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic.

Published: February 2023

The glia limitans superficialis (GLS) on the rodent cortical surface consists of astrocyte bodies intermingled with their cytoplasmic processes. Many studies have observed astrocyte reactivity in the medial prefrontal cortex (mPFC) parenchyma induced by a peripheral nerve injury, while the response of GLS astrocytes is still not fully understood. The aim of our study was to identify the reactivity of rat GLS astrocytes in response to sciatic nerve compression (SNC) over different time periods. The alteration of GLS astrocyte reactivity was monitored using immunofluorescence (IF) intensities of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and NFκBp65. Our results demonstrated that SNC induced GLS astrocyte reactivity seen as increased intensities of GFAP-IF, and longer extensions of cytoplasmic processes into lamina I. First significant increase of GFAP-IF was observed on post-operation day 7 (POD7) after SNC with further increases on POD14 and POD21. In contrast, dynamic alteration of the extension of cytoplasmic processes into lamina I was detected as early as POD1 and continued throughout the monitored survival periods of both sham and SNC operations. The reactivity of GLS astrocytes was not associated with their proliferation. In addition, GLS astrocytes also displayed a significant decrease in GS immunofluorescence (GS-IF) and NFκB immunofluorescence (NFκB-IF) in response to sham and SNC operation compared with naïve control rats. These results suggest that damaged peripheral tissues (following sham operation as well as peripheral nerve lesions) may induce significant changes in GLS astrocyte reactivity. The signaling mechanism from injured peripheral tissue and nerve remains to be elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-022-02161-6DOI Listing

Publication Analysis

Top Keywords

astrocyte reactivity
20
gls astrocytes
16
cytoplasmic processes
12
gls astrocyte
12
glia limitans
8
limitans superficialis
8
medial prefrontal
8
prefrontal cortex
8
sciatic nerve
8
nerve injury
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!