A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Rishirilide Biosynthesis by a Rare In-Cluster Phosphopantetheinyl Transferase in Streptomyces xanthophaeus. | LitMetric

Phosphopantetheinyl transferases (PPTases) play important roles in activating -acyl carrier proteins (-ACPs) and -peptidyl carrier proteins (-PCPs) in both primary and secondary metabolism. PPTases catalyze the posttranslational modifications of those carrier proteins by covalent attachment of the 4'-phosphopantetheine group to a conserved serine residue. The protein-protein interactions between a PPTase and a cognate acyl or peptidyl carrier protein have important regulatory functions in microbial biosynthesis, but the molecular mechanism underlying their specific recognition remains elusive. In this study, we identified a new rishirilide biosynthetic gene cluster with a rare in-cluster PPTase from Streptomyces xanthophaeus no2. The function of this Sfp-type PPTase, SxrX, in rishirilide production was confirmed using genetic mutagenesis and biochemical characterization. We applied molecular modeling and site-directed mutagenesis to identify key residues mediating the protein-protein interaction between SxrX and its cognate ACP. In addition, six natural products were isolated from wild-type no2 and the Δ mutant, including rishirilide A and lupinacidin A, that exhibited antimicrobial and anticancer activities, respectively. SxrX is the first Sfp-type PPTase identified from an aromatic polyketide biosynthetic gene cluster and shown to be responsible for high-level production of rishirilide derivatives. Genome mining has been a vital means for natural product drug discovery in the postgenomic era. The rishirilide-type polyketides have attracted attention due to their potent bioactivity, but the poor robustness of production hosts has limited further research and development. This study not only identifies a hyperproducer of rishirilides but also reveals a rare, in-cluster PPTase SxrX that plays an important role in boosting rishirilide biosynthesis. Experimental and computational investigations revealed new insights on the protein-protein interaction between SxrX and its cognate ACP with wide implications for understanding polyketide biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769936PMC
http://dx.doi.org/10.1128/spectrum.03247-22DOI Listing

Publication Analysis

Top Keywords

rare in-cluster
12
carrier proteins
12
rishirilide biosynthesis
8
streptomyces xanthophaeus
8
biosynthetic gene
8
gene cluster
8
in-cluster pptase
8
sfp-type pptase
8
pptase sxrx
8
protein-protein interaction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!