Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metallized polymer films (MPFs) with superior self-healing properties are extremely attractive for application in energy storage capacitors. Self-healing behaviors allow MPFs to keep insulating between the local electrical breakdown region and the electrode, thereby reserving long-term operational viability of the capacitors. Polyimide (PI) is a type of well-developed polymer material with excellent mechanical and thermal stabilities, but it is deficient in intrinsic self-healing capabilities. This work reports a facile surface engineering strategy to endow metalized PI films with self-healing capabilities. By simple immersion of bare PI films in the solution of epoxy resin (ER) accompanied by curing of ER, PI films impregnated with ER (P-E films) not only show enhanced dielectric characteristics but also obtain excellent self-healing abilities upon multiple cycles of electrical breakdowns, even at a high temperature. For example, in comparison to bare PI films, PI films impregnated in ER solution with a solid content of 1 wt % (P-1%E) display improved initial Weibull breakdown strength (α of 353.0 versus 310.9 kV/mm), maximum discharging energy density ( of 2.1836 versus 0.8254 J/cm), and charging/discharging efficiency (η of 95.72 versus 55.19%) at 150 °C. After 5 breakdown cycles, P-1%E films could maintain a much higher breakdown strength (α of 338.1 versus 21.3 kV/mm). When subjected to a constant electrical strength of 350 kV/mm at 150 °C, P-1%E films show merely <6% decline in both and η values after 5 breakdown cycles. On the contrary, bare PI films would undergo dramatic performance decay after 1 or 2 breakdowns under similar conditions. In view of their outstanding self-healing properties at a high temperature, P-E films can serve as a promising candidate to fabricate thermally stable MPF capacitors for long-term operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c13379 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!