The advent of high throughput techniques in the past decade has significantly advanced the field of epitranscriptomics. The internal chemical modification of the target RNA at a specific site is a basic feature of epitranscriptomics and is critical for its structural stability and functional property. More than 170 modifications at the transcriptomic level have been reported so far, among which m6A methylation is one of the more conserved internal RNA modifications, abundantly found in eukaryotic mRNAs and frequently involved in enhancing the target messenger RNA's (mRNA) stability and translation. m6A modification of mRNAs is essential for multiple physiological processes including stem cell differentiation, nervous system development and gametogenesis. Any aberration in the m6A modification can often result in a pathological condition. The deregulation of m6A methylation has already been described in inflammation, viral infection, cardiovascular diseases and cancer. The m6A modification is reversible in nature and is carried out by specialized m6A proteins including writers (m6A methyltransferases) that add methyl groups and erasers (m6A demethylases) that remove methyl groups selectively. The fate of m6A-modified mRNA is heavily reliant on the various m6A-binding proteins ("readers") which recognize and generate a functional signal from m6A-modified mRNA. In this review, we discuss the role of a family of reader proteins, "YT521-B homology domain containing family" (YTHDF) proteins, in human physiology and pathology. In addition, we critically evaluate the potential of YTHDF proteins as therapeutic targets in human diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.30907 | DOI Listing |
Recent studies revealed that the YTHDF family proteins bind preferentially to the N6-methyladenosine (m6A)-modified mRNA and regulate functions of these RNAs in different cell types. YTHDF2, the first identified m6A reader in mammals, has garnered significant attention because of its profound effect to regulate the m6A epitranscriptome in multiple biological processes. Here, we review current knowledge on the mechanisms by which YTHDF2 exerts its functions and discuss recent advances that underscore the multifaceted role of YTHDF2 in development, stem cell expansion and immune evasion.
View Article and Find Full Text PDFGenome Res
December 2024
School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
A single guide RNA (sgRNA) directs Cas9 nuclease for gene-specific scission of double-stranded DNA. High Cas9 activity is essential for efficient gene editing to generate gene deletions and gene replacements by homologous recombination. However, cleavage efficiency is below 50% for more than half of randomly selected sgRNA sequences in human cell culture screens or model organisms.
View Article and Find Full Text PDFEMBO J
December 2024
University of Copenhagen, Copenhagen Plant Science Center, Department of Biology, Copenhagen N, Denmark.
N6-methyladenosine (mA) exerts many of its regulatory effects on eukaryotic mRNAs by recruiting cytoplasmic YT521-B homology-domain family (YTHDF) proteins. Here, we show that in Arabidopsis thaliana, the interaction between mA and the major YTHDF protein ECT2 also involves the mRNA-binding ALBA protein family. ALBA and YTHDF proteins physically associate via a deeply conserved short linear motif in the intrinsically disordered region of YTHDF proteins and their mRNA target sets overlap, with ALBA4 binding sites being juxtaposed to mA sites.
View Article and Find Full Text PDFMicroorganisms
October 2024
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
N6-methyladenosine (mA) is the most prevalent internal RNA modification. Here, we demonstrate that coxsackievirus B3 (CVB3), a common causative agent of viral myocarditis, induces mA modification primarily at the stop codon and 3' untranslated regions of its genome. As a positive-sense single-stranded RNA virus, CVB3 replicates exclusively in the cytoplasm through a cap-independent translation initiation mechanism.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!