Circulating cell-free microRNAs (miRNAs) represent a major reservoir for biomarker discovery. Unfortunately, their implementation in clinical practice is limited due to a profound lack of reproducibility. The great technical variability linked to major pre-analytical and analytical caveats makes the interpretation of circulating cell-free miRNA data challenging and leads to inconsistent findings. Additional efforts directed to standardization are fundamental. Several well-established protocols are currently used by independent groups worldwide. Nonetheless, there are some specific aspects in specimen collection and processing, sample handling, miRNA quantification, and data analysis that should be considered to ensure reproducibility of results. Here, we have addressed this challenge using an alternative approach. We have highlighted and discussed common pitfalls that negatively impact the robustness of circulating miRNA quantification and their application for clinical decision-making. Furthermore, we provide a checklist usable by investigators to facilitate and ensure the control of the whole miRNA quantification and analytical process. We expect that these recommendations improve the reproducibility of findings, and ultimately, facilitate the incorporation of circulating miRNA profiles into clinical practice as the next generation of disease biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408363.2022.2128030DOI Listing

Publication Analysis

Top Keywords

mirna quantification
12
circulating cell-free
8
clinical practice
8
circulating mirna
8
mirna
5
development circulating
4
circulating microrna-based
4
microrna-based biomarkers
4
biomarkers medical
4
medical decision-making
4

Similar Publications

Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) in cerebrospinal fluid (CSF) represent a valuable source of biomarkers for central nervous system (CNS) diseases, offering new pathways for diagnosis and monitoring. However, existing methods for isolating EVs from CSF often prove to be labor-intensive and reliant on specialized equipment, hindering their clinical application. In this study, we present a novel, clinically compatible method for isolating EVs from CSF.

View Article and Find Full Text PDF

Age-Related Choroidal Involution Is Associated with the Senescence of Endothelial Progenitor Cells in the Choroid.

Biomedicines

November 2024

Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada.

Choroidal involution is a common feature of age-related ischemic retinopathies such as age-related macular degeneration (AMD). It is now well recognized that endothelial progenitor cells (EPCs) are essential to endothelial repair processes and in maintaining vascular integrity. However, the contribution of EPCs and the role of senescence in age-related choroidal vascular degeneration remain to be investigated.

View Article and Find Full Text PDF

Background: The diagnosis of malignant thyroid nodules is mainly based on the fine-needle aspiration biopsy (FNAB). To improve the detection of malignant nodules, different molecular tests have been developed. We present a new molecular signature based on altered miRNA expressions and specific mutations.

View Article and Find Full Text PDF

Dual-signal portable microRNA biosensor based on a photothermal/visual strategy induced by cascading amplification techniques and horseradish peroxidase.

Talanta

January 2025

Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei Province, PR China. Electronic address:

MicroRNAs (miRNAs) serve as potential biomarkers for many diseases such as cancer, neurodegenerative diseases and cardiovascular conditions. The portable and accurate detection of miRNA is of great significance for the early diagnosis, treatment optimization and prognostic evaluation of diseases. Herein, a photothermal/visual dual-mode assay for let-7a is developed utilizing oxidized 3, 3', 5, 5' - tetramethylbenzidine (oxTMB) as signal reporter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!