Background: Over 50 Taiwanese firefly species have been discovered, but scientists lack information regarding most of their genetics, bioluminescent features, and cohabitating phenomena. In this study, we focus on morphological species identification and phylogeny reconstructed by barcoding, as well as luminescent characteristics of cohabited Taiwanese firefly species to determine the key factors that influenced how distinct bioluminescent species evolved to coexist and proliferate within the same habitat.

Methods: In this study, 366 specimens from nine species were collected in northern Taiwan from April to August, 2016-2019. First, the species and sex of the specimens were morphologically and genetically identified. Then, their luminescent spectra and intensities were recorded using a spectrometer and a power meter, respectively. The habitat temperature, relative humidity, and environmental light intensity were also measured. The cytochrome oxidase I (COI) gene sequence was used as a DNA barcode to reveal the phylogenetic relationships of cohabitated species.

Results: Nine species-eight adult species (, , , , and ) and one larval -were morphologically identified. The nine species could be found in April-August. Six of the eight adult species shared an overlap occurrence period in May. Luminescent spectra analysis revealed that the of studied species ranged from 552-572 nm (yellow-green to orange-yellow). The average luminescent intensity range of these species was about 1.2-14 lux (182.1-2,048 nW/cm) for males and 0.8-5.8 lux (122.8-850 nW/cm) for females, and the maximum luminescent intensity of males was 1.01-7.26-fold higher than that of females. Compared with previous studies, this study demonstrates that different , species-specific flash patterns, microhabitat choices, nocturnal activity time, and/or an isolated mating season are key factors that may lead to the species-specific courtship of cohabitated fireflies. Moreover, we estimated that the fireflies start flashing or flying when the environmental light intensity decreased to 6.49-28.1 lux. Thus, based on a rough theoretical calculation, the sensing distance between male and female fireflies might be 1.8-2.7 m apart in the dark. In addition, the mitochondrial COI barcode identified species with high resolution and suggested that most of the studied species have been placed correctly with congeners in previous phylogenies. Several cryptic species were revealed by the COI barcode with 3.27%-12.3% variation. This study renews the idea that fireflies' luminescence color originated from the green color of a Lampyridae ancestor, then red-shifted to yellow-green in Luciolinae, and further changed to orange-yellow color in some derived species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620971PMC
http://dx.doi.org/10.7717/peerj.14195DOI Listing

Publication Analysis

Top Keywords

species
15
luminescent characteristics
8
mitochondrial coi
8
taiwanese firefly
8
firefly species
8
key factors
8
luminescent spectra
8
environmental light
8
light intensity
8
adult species
8

Similar Publications

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

The hydrolysis rates of many organic chemicals are accelerated under alkaline conditions by the presence of hydroxide (HO), which is typically assumed to be the predominant species contributing to base-catalyzed hydrolysis in both natural waters and laboratory buffers used in standard protocols. In this study, we demonstrated that weak bases (e.g.

View Article and Find Full Text PDF

Promoting SO and OH Generation from Sulfate Solution toward Efficient Electrochemical Oxidation of Organic Contaminants at a B/N-Doped Diamond Flow-Through Electrode.

Environ Sci Technol

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Electrochemical oxidation via in situ-generated reactive oxygen species (ROS) is effective for the mineralization of refractory organic pollutants. However, the oxidation performance is usually limited by the low yield and utilization efficiency of ROS. Herein, a B/N-doped diamond (BND) flow-through electrode with enhanced SO/OH generation and utilization was designed for electrochemical oxidation of organic pollutants in sulfate solution.

View Article and Find Full Text PDF

Fungal trunk diseases are of major concern for tree fruit, nut, and grape growers throughout the world. These diseases include Eutypa dieback of grape, caused by , band canker of almond, caused by and , and twig and branch dieback of walnut, caused by , Botryosphaeria dieback of grape, caused by , and , and esca of grape, caused by and . Given the common occurrence of mixed infections, and the similar wood symptoms at the macroscopic level, species-specific detection tools are needed.

View Article and Find Full Text PDF

Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!