Metachromatic Leukodystrophy (MLD) is a rare autosomal recessive disease, which is caused by mutations in the arylsulfatase A () gene. The gene is located on chromosome 22q13, containing eight exons. According to the age of onset, MLD can be divided into late infantile type, juvenile type, and adult type. Adult MLD has an insidious onset after the age of 16 years. Additionally, intellectual as well as behavioral changes, such as memory deficits or emotional instability, are commonly the first presenting symptoms. There is a study that reported an adult-onset MLD manifested cognitive impairment progressively due to compound heterozygous mutations of NM_000487: c.[185_186dupCA], p.(Asp63GlnfsTer18), and NM_000487: c.[154G>T], p.(Gly172Cys), rs74315271 in the gene, finding that the c.[154G>T], p.(Gly172Cys) is a novel missense mutation. Brain magnetic resonance imaging (MRI) revealed symmetrical demyelination of white matter. The activity of ARSA enzymatic in leukocytes decreased. Nerve conduction studies displayed that evidence of polyneuropathy was superimposed upon diffuse, uniform demyelinating, and sensorimotor polyneuropathy. Family genes revealed that each family member carried one of two heterozygous mutant genes. She has been discharged and is currently being followed up. This study found a compound heterozygous mutation in the gene associated with MLD and identified a novel missense mutation NM_000487: c.[154G>T], p.(Gly172Cys), rs74315271. This will provide a critical clue for prenatal diagnosis of the offspring in this family, and expand the mutation spectrum of MLD-related .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619211 | PMC |
http://dx.doi.org/10.3389/fneur.2022.1011019 | DOI Listing |
Am J Hum Genet
December 2024
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China. Electronic address:
Medicine (Baltimore)
December 2024
Newborn Screening Center, Jinan Maternal and Child Care Hospital, Jinan, P.R.China.
Rationale: The high clinical heterogeneity of hypermethioninemia caused by MAT1A gene defects has resulted in a paucity of studies examining the association between clinical phenotypes, biochemical characteristics, and gene mutations in this patient group. Furthermore, the indications for therapeutic interventions in patients remain unclear. The objective of this study is to provide a foundation for clinical diagnosis, genetic counseling, and follow-up management of hypermethioninemia caused by MAT1A gene defects.
View Article and Find Full Text PDFAm J Med Genet A
December 2024
Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
You-Hoover-Fong syndrome (YHFS) is a rare autosomal recessive disorder characterized by global developmental delay, microcephaly, dysmorphic facial features, and a spectrum of neurodevelopmental abnormalities. YHFS is caused by pathogenic variants in TELO2, a gene involved in regulation of the cell cycle. To date, 29 individuals with YHFS have been reported and none of them has been reported to develop tumors.
View Article and Find Full Text PDFJ Med Case Rep
December 2024
Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa, 903-0215, Japan.
Background: Adult hypophosphatasia is an uncommon inherited disorder of mineral homeostasis affecting bone. It arises from mutations within the Alkaline Phosphatase, Biomineralization Associated (ALPL) gene, which encodes tissue-nonspecific alkaline phosphatase. Because of its low prevalence and non-specific clinical manifestations, underdiagnosis and misdiagnosis are frequent, particularly in Asian populations.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
Background: This study evaluated the clinical characteristics of neuronal ceroid lipofuscinosis type 7 or CLN7 disease spectrum to characterize the clinical, electrophysiologic and neuroimaging phenotypes.
Methods: We performed a single-center cross sectional data collection along with retrospective medical chart review in patients with a genetic diagnosis of CLN7. This study received ethical approval by the University of Texas Southwestern Medical Center Institutional Review Board.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!