Background: Patients with familial hypercholesterolemia (FH) display high levels of low-density lipoprotein cholesterol (LDL-c), endothelial dysfunction, and increased risk of premature atherosclerosis. We have previously shown that red blood cells (RBCs) from patients with type 2 diabetes induce endothelial dysfunction through increased arginase 1 and reactive oxygen species (ROS).

Objective: To test the hypothesis that RBCs from patients with FH (FH-RBCs) and elevated LDL-c induce endothelial dysfunction.

Methods And Results: FH-RBCs and LDL-c >5.0 mM induced endothelial dysfunction following 18-h incubation with isolated aortic rings from healthy rats compared to FH-RBCs and LDL-c <2.5 mM or RBCs from healthy subjects (H-RBCs). Inhibition of vascular but not RBC arginase attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. Furthermore, arginase 1 but not arginase 2 was elevated in the vasculature of aortic segments after incubation with FH-RBCs and LDL-c >5.0 mM. A superoxide scavenger, present throughout the 18-h incubation, attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. ROS production was elevated in these RBCs in comparison with H-RBCs. Scavenging of vascular ROS through various antioxidants also attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. This was corroborated by an increase in the lipid peroxidation product 4-hydroxynonenal. Lipidomic analysis of RBC lysates did not reveal any significant changes across the groups.

Conclusion: FH-RBCs induce endothelial dysfunction dependent on LDL-c levels via arginase 1 and ROS-dependent mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092865PMC
http://dx.doi.org/10.1111/joim.13580DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
28
fh-rbcs ldl-c
20
ldl-c >50
16
induce endothelial
12
red blood
8
endothelial
8
patients familial
8
familial hypercholesterolemia
8
ldl-c
8
dysfunction increased
8

Similar Publications

Protective effects of berbamine against arginase-1 deficiency-induced injury in human brain microvascular endothelial cells.

Front Pharmacol

January 2025

Department of Geriatric Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.

Endothelial cell dysfunction plays a crucial role in the early development of cerebral small vessel disease (CSVD). Arginase-1 (ARG1) is expressed in endothelial cells, and its deficiency may exacerbate cerebrovascular damage by increasing reactive oxygen species (ROS) production, thereby inducing endothelial cell apoptosis. Berbamine (BBM) has shown potential in neuroprotection and cardiovascular disease prevention.

View Article and Find Full Text PDF

Purpose: To compare the anatomical and visual outcomes in eyes with submacular hemorrhage (SMH) treated with a combination of ranibizumab (RBZ) either innovator or biosimilar (Razumab) and intravitreal perfluoropropane gas (CF).

Methods: Treatment naïve neovascular age related macular degeneration (n-AMD) patients with SMH were retrospectively analyzed. Patients received either innovator or biosimilar RBZ (3 loading doses followed by pro re nata regimen) and single injection of intravitreal CF.

View Article and Find Full Text PDF

Exosomes play a role in cell communication by transporting content between cells. Here, we tested whether renal podocyte-derived exosomes affect the injury of glomerular endothelial cells in lupus nephritis (LN). We found that exosomes containing high levels of high mobility group box 1 (HMGB1) were released from podocytes in patients with LN, BALB/c mice injected with pristane (which induces lupus-like disease in mice), and cultured human renal glomerular endothelial cells (HRGECs) treated with LN plasma.

View Article and Find Full Text PDF

The lncRNA DSCR9 is modulated in pulmonary arterial hypertension endothelial cell models and is associated with alterations in the nitric oxide pathway.

Vascul Pharmacol

January 2025

Department of Internal Medicine, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy. Electronic address:

Long non-coding RNA (lncRNA) may be involved in dysfunction of pulmonary artery endothelial cells (PAEC) and, thus, in pulmonary arterial hypertension (PAH) pathobiology. We screened the RNA expression profile of commercial human PAEC (hPAEC) exposed to increased hydrostatic pressure, and found that the lncRNA Down syndrome critical region 9 (DSCR9) was the most regulated transcript (log2FC 1.89 vs control).

View Article and Find Full Text PDF

MFN2-mediated decrease in mitochondria-associated endoplasmic reticulum membranes contributes to sunitinib-induced endothelial dysfunction and hypertension.

J Mol Cell Cardiol

January 2025

Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China. Electronic address:

Unlabelled: Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension.

Methods: Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!