This study provides important data on the distribution, sources and ecological risks of polycyclic aromatic hydrocarbons (PAHs), in surface waters and sediments collected from dam reservoirs on middle and lower course of the Olt River, the main tributary of the Danube, until the discharge into the Black Sea. A wide variation range of total PAHs concentrations in water (from 1.3 to 46.2 ng/L) and sediment (from 1.78 to 614.04 μg/kg) samples was emphasized by the results. The highest average PAHs concentration in water was recorded in the cold season and the lowest in the summer. In sediments, no differences were observed depending on the sampling period. Spatial distribution of PAHs in waters and sediments was correlated with the main anthropogenic activities along the river course. Regardless of the method used to attribute PAH sources (diagnostic ratios of specific PAHs, principal component analysis and hierarchical cluster analysis), it was confirmed that the potential anthropogenic sources of PAHs were both pyrogenic (incomplete combustion of biomass and coal) and pyrolytic (incomplete combustion of liquid fossil fuels and vehicle exhaust emissions), with a dominant pyrolytic input. Ecological risk assessment based on environmental quality standards, mean effect range-median quotient (m-ERM-Q), toxic equivalency factors (TEFs) and risk quotient (RQ) methods indicated potentially low ecological risks from PAHs. The ecological status of the Olt river waters poses no potential risk, and pollution of surface sediments can be classified as low polluted, except for two sites near industrial activities classified as moderately polluted. Therefore, a regular monitoring of PAHs concentration in the waters and sediments should be performed to prevent further contamination of PAHs in the studied area, especially in densely populated industrial areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.137024DOI Listing

Publication Analysis

Top Keywords

waters sediments
16
olt river
12
pahs
9
distribution sources
8
sources ecological
8
ecological risk
8
risk assessment
8
polycyclic aromatic
8
aromatic hydrocarbons
8
dam reservoirs
8

Similar Publications

Mass load and source apportionment of pharmaceutical and personal care product in the Wuhan section of the Yangtze River, China.

Sci Total Environ

December 2024

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Electronic address:

Given the limited research on pharmaceuticals and personal care products (PPCPs) in the Wuhan section of the Yangtze River (WYR), this work investigated the distribution of 15 PPCPs in this region, assessed their ecological risks and annual fluxes. It was further to analyze the levels of indicator sucralose in the WYR to understand the sources of PPCPs. The results showed the average concentrations were 143.

View Article and Find Full Text PDF

Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter.

Sci Total Environ

December 2024

Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system.

View Article and Find Full Text PDF

Dissolved metal concentrations in coastal seawater and groundwater in Saipan, Commonwealth of the Northern Mariana Islands, USA.

Mar Pollut Bull

December 2024

Department of Environmental Science, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, United States of America; Department of Environmental Science and Studies, Washington College, Chestertown, MD 21620, United States of America.

Saipan, the largest and most populated island of the Commonwealth of the Northern Mariana Islands, has coastal areas with high submarine groundwater discharge (SGD) and heavy metal pollution of sediments. Here, we measured metal concentrations in coastal Saipan groundwater and surface water and explored spatial correlations with pollution sources. Concentrations of Cd, Pb, Cu, and Zn were highest in inland wells, with 3 wells exceeding USEPA guidelines for Cu or Pb.

View Article and Find Full Text PDF

Coastal lagoons are vital yet vulnerable marine ecosystems. This study analyzes a five-year dataset to evaluate changes in water quality and their impacts on biota in Pinqing Lagoon (PQL). Seasonal surveys conducted from 2019 to 2023 across 14 sites revealed significant variability in water and sediment quality parameters.

View Article and Find Full Text PDF

The interaction between seagrass meadow density and microplastic retention in four cool-temperate estuaries.

Mar Pollut Bull

December 2024

Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, South Africa. Electronic address:

Microplastics are widespread pollutants of estuarine ecosystems. Seagrasses have been hypothesized to filter microplastics through their dense meadows, yet the mechanisms governing their interaction with microplastics are not well understood, particularly within a South African context. Here we compared how microplastics might accumulate in the sediments associated with Zostera capensis meadows across dense and patchy meadows and unvegetated sediment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!