AI Article Synopsis

Article Abstract

Insect wings are deformable airfoils, in which deformations are mostly achieved by complicated interactions between their structural components. Due to the complexity of the wing design and technical challenges associated with testing the delicate wings, we know little about the properties of their components and how they determine wing response to flight forces. Here, we report an unusual structure from the hind-wing membrane of the beetle . The structure, a transverse section of the claval flexion line, consists of two distinguishable layers: a bell-shaped upper layer and a straight lower layer. Our computational simulations showed that this is an effective one-way hinge, which is stiff in tension and upward bending but flexible in compression and downward bending. By systematically varying its design parameters in a computational model, we showed that the properties of the double-layer membrane hinge can be tuned over a wide range. This enabled us to develop a broad design space, which we later used for model selection. We used selected models in three distinct applications, which proved that the double-layer hinge represents a simple yet effective design strategy for controlling the mechanical response of structures using a single material and with no extra mass. The insect-inspired, one-way hinge is particularly useful for developing structures with asymmetric behavior, exhibiting different responses to the same load in two opposite directions. This multidisciplinary study not only advances our understanding of the biomechanics of complicated insect wings but also informs the design of easily tunable engineering hinges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661187PMC
http://dx.doi.org/10.1073/pnas.2211861119DOI Listing

Publication Analysis

Top Keywords

double-layer membrane
8
insect wings
8
one-way hinge
8
hinge
5
design
5
insect-inspired asymmetric
4
asymmetric hinge
4
hinge double-layer
4
membrane insect
4
wings deformable
4

Similar Publications

The increasing demand for energy in cooling systems due to global warming presents a significant challenge. Conventional air-conditioning methods exacerbate climate change by contributing to heightened carbon emissions. Glass facades, renowned in modern architecture for their versatility and aesthetic appeal, inadvertently trap solar radiation, resulting in heat buildup and the greenhouse effect.

View Article and Find Full Text PDF

Recently, ionic thermoelectric supercapacitors have gained attention because of their high open circuit voltages, even for ions that are redox inactive. As a source of open circuit voltage (electromotive force), an asymmetry in electric double layers developed by the adsorption of ions at the electrode surfaces kept at different temperatures has previously been proposed. As another source, the Eastman entropy of transfer, which is related to the Soret coefficient, has been considered.

View Article and Find Full Text PDF

The aim of this study was to reveal the mechanism of cold stimulation (CS)-bronchial epithelial cells (BECs) derived exosomes (CS-BECs-exo) aggravated sepsis induced acute lung injury (SALI). CS-BECs-exo were separated by differential centrifugation and were characterized. Proteomics, immunoprecipitation, and RAGE knockout (RAGE) mice were used to investigate the mechanism of CS-BECs-exo aggravated SALI.

View Article and Find Full Text PDF
Article Synopsis
  • Using alternating currents (AC) can effectively prevent the formation of mineral crystals on surfaces in contact with super-saturated fluids, such as heat exchangers and pipes.
  • The study demonstrates that periodic charging and discharging of the electrical double layer (EDL) on titanium sheets in super-saturated CaCO solutions inhibits both crystal nucleation and growth due to enhanced ion migration.
  • Operating at 4 V and frequencies between 0.1-10 Hz results in over 96% reduction in turbidity and over 92% reduction in calcium carbonate coverage, showcasing a promising method for controlling mineral scaling in various industrial applications.
View Article and Find Full Text PDF
Article Synopsis
  • Carbon nanotubes (CNT) are effective drug carriers due to their unique properties, but their walls need to be coated with peptides to ensure safety and reduce toxicity in the human body.
  • Recent research focuses on loading the drugs ketoprofen and naproxen, attached to a specific RGD peptide, onto CNT and analyzing their interactions with biological membranes through molecular dynamics simulations.
  • The findings indicate that these drug-CNT complexes engage in significant interactions with membranes, leading to spontaneous diffusion and higher stability confirmed by van der Waals energy, facilitating drug penetration when the peptide sequence is present.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!