A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acrylamide-Induced Hepatotoxicity Through Oxidative Stress: Mechanisms and Interventions. | LitMetric

Acrylamide-Induced Hepatotoxicity Through Oxidative Stress: Mechanisms and Interventions.

Antioxid Redox Signal

College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China.

Published: June 2023

Acrylamide (AA) widely exists in the environment. Studies have demonstrated that AA has neurotoxicity and potential carcinogenicity in humans, and genotoxicity and severe hepatotoxicity in animals. As the critical metabolism organ, the liver is the primary attacking target of AA. This review summarizes the recent advances in hepatotoxicity mechanism through AA-induced oxidative stress in rodent livers and hepatic cell lines, and this is beneficial to assess the risks of AA exposure and explore effective intervention methods for AA hepatotoxicity. Accumulating evidence has indicated that AA-induced oxidative stress is responsible for its hepatotoxicity. The changes in homological and biochemical indexes such as activities of hepatic antioxidant enzymes have been elucidated with the occurrence and development of oxidative stress. Also, the molecular mechanisms underlying AA-induced hepatotoxicity through oxidative stress have been mainly explained by apoptosis, inflammatory, and autophagic pathways. This review is focusing on the molecular mechanism of hepatotoxicity through AA-induced oxidative stress, and this can provide a theoretical basis for the assessment of AA-induced health risk and finding potential intervention targets. Epigenetic modifications such as microRNAs (miRNAs) and modulation of the gut microbiome involved in the AA toxification pathway must be investigated, and they will provide novel insights to unravel the toxification mechanism and intervention strategy for AA hepatotoxicity. 38, 1122-1137.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2022.0055DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
aa-induced oxidative
12
hepatotoxicity oxidative
8
hepatotoxicity
7
oxidative
6
stress
6
aa-induced
5
acrylamide-induced hepatotoxicity
4
stress mechanisms
4
mechanisms interventions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!