LAT is a membrane-linked scaffold protein that undergoes a phase transition to form a two-dimensional protein condensate on the membrane during T cell activation. Governed by tyrosine phosphorylation, LAT recruits various proteins that ultimately enable condensation through a percolation network of discrete and selective protein-protein interactions. Here, we describe detailed kinetic measurements of the phase transition, along with coarse-grained model simulations, that reveal that LAT condensation is kinetically frustrated by the availability of bonds to form the network. Unlike typical miscibility transitions in which compact domains may coexist at equilibrium, the LAT condensates are dynamically arrested in extended states, kinetically trapped out of equilibrium. Modeling identifies the structural basis for this kinetic arrest as the formation of spindle arrangements, favored by limited multivalent binding interactions along the flexible, intrinsically disordered LAT protein. These results reveal how local factors controlling the kinetics of LAT condensation enable formation of different, stable condensates, which may ultimately coexist within the cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629719 | PMC |
http://dx.doi.org/10.1126/sciadv.abo5295 | DOI Listing |
BMC Cancer
January 2025
Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: Even though major improvements have been made in the treatment of myeloma, the majority of patients eventually relapse or progress. Patients with multiple myeloma who relapse after initial high-dose chemotherapy with autologous stem cells have a median progression free survival up to 2-3 years, depending on risk factors such as previous remission duration. In recent years, growing evidence has suggested that allogeneic stem cell transplantation could be a promising treatment option for patients with relapsed or progressed multiple myeloma.
View Article and Find Full Text PDFNat Commun
January 2025
NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, China.
The discovery of high-temperature superconductivity in LaNiO under pressure has drawn great attention. However, consensus has not been reached on its pairing symmetry in theory. By combining density-functional-theory (DFT), maximally-localized-Wannier-function, and linearized gap equation with random-phase-approximation, we find that the pairing symmetry of LaNiO is d, if its DFT band structure is accurately reproduced by a downfolded bilayer two-orbital model.
View Article and Find Full Text PDFNat Commun
January 2025
Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Migration characteristics and occurrence forms of redox-sensitive metal(loid)s such as arsenic (As), chromium (Cr), and vanadium (V) remained unclear in dynamic estuarine waters. In this work, size fractionation and chemical speciation of As, Cr, and V in the Jiaomen Waterway (JMW), a tidal river of the Pearl River estuary, were explored based on (ultra)filtration, the diffusive gradients in thin films (DGT) techniques and a thermodynamic chemical equilibrium model. The results showed that As was present mainly in soluble forms in the river water, and the suspended particulate matter (SPM) was identified the major carrier for Cr.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China. Electronic address:
Tartary buckwheat (Fagopyrum tataricum), a functional grain known for its medicinal and nutritional properties, has garnered significant attention due to its high flavonoid content and unique health benefits. Heat stress during the flowering stage can lead to sterility in Tartary buckwheat, resulting in reduced yields. This study investigates the effects of a treatment (30/27 °C for 7 days) on flower development, fertility, stress physiology, and gene expression in Tartary buckwheat, while also validating the efficacy of hormone treatments in alleviating the negative effects of heat stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!