A combination of gas adsorption and gas breakthrough measurements show that the metal-organic framework, Al(HCOO) (ALF), which can be made inexpensively from commodity chemicals, exhibits excellent CO adsorption capacities and outstanding CO/N selectivity that enable it to remove CO from dried CO-containing gas streams at elevated temperatures (323 kelvin). Notably, ALF is scalable, readily pelletized, stable to SO and NO, and simple to regenerate. Density functional theory calculations and in situ neutron diffraction studies reveal that the preferential adsorption of CO is a size-selective separation that depends on the subtle difference between the kinetic diameters of CO and N. The findings are supported by additional measurements, including Fourier transform infrared spectroscopy, thermogravimetric analysis, and variable temperature powder and single-crystal x-ray diffraction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942769PMC
http://dx.doi.org/10.1126/sciadv.ade1473DOI Listing

Publication Analysis

Top Keywords

aluminum formate
4
formate alhcoo
4
alhcoo earth-abundant
4
earth-abundant scalable
4
scalable highly
4
highly selective
4
selective material
4
material capture
4
capture combination
4
combination gas
4

Similar Publications

Recent photolysis experiments with formic acid suggest that the roaming mechanism is a significant CO-forming pathway at a photolysis energy of 230 nm. While previous computational studies have identified multiple dissociation pathways for CO-forming channels, the dynamic features of these pathways remain poorly understood. This study investigates the dissociation dynamics of the CO + HO and CO + H channels in the ground state (S) of formic acid using direct dynamics simulation and the generalized multi-center impulsive model (GMCIM) at 230 nm.

View Article and Find Full Text PDF

While photochemical aging is known to alter secondary organic aerosol (SOA) properties, this process remains poorly constrained for anthropogenic SOA. This study investigates the photodegradation of SOA produced from the hydroxyl radical-initiated oxidation of naphthalene under low- and high-NO conditions. We used state-of-the-art mass spectrometry (MS) techniques, including extractive electrospray ionization and chemical ionization MS, for the in-depth molecular characterization of gas and particulate phases.

View Article and Find Full Text PDF

Recently, Beller and coworkers reported a study on the reversible hydrogenation of CO2 to formic acid using a Mn(I)-PN5P complex. In this paper, we performed DFT calculations to understand the mechanism for this reversible reaction occurring on the Mn-PN5P, Mn-PN3P, and Mn-PNP catalysts. Through investigating in detail two possible routes for CO2 hydrogenation to formic acid, we noticed that the production of formic acid is not thermodynamically favorable.

View Article and Find Full Text PDF

Oxalic acid (OA), an essential pathogenic factor, has been identified in several plant pathogens, and researchers are currently pursuing studies on interference with OA metabolism as a treatment for related diseases. However, the metabolic route in remains unknown. In this study, we describe D-erythroascorbic acid-mediated OA synthesis and its metabolic and clearance pathways in rice blast fungus.

View Article and Find Full Text PDF

A reliable LC-MS/MS method for the quantification of natural amino acids in human plasma and its application in clinic.

J Pharm Biomed Anal

January 2025

Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China. Electronic address:

A simple and fast LC-MS/MS method was developed and validated for simultaneous quantification of 20 L-amino acids (AAs) in human plasma. Chromatographic separation was achieved on an Agilent AdvanceBio Hilic column within 15 min via gradient elution with an aqueous solution containing 5 mM ammonium formate, 5 mM ammonium acetate and 0.1 % formic acid and an organic mobile phase containing 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!