The blue antelope (Hippotragus leucophaeus) is the only large African mammal species to have become extinct in historical times, yet no nuclear genomic information is available for this species. A recent study showed that many alleged blue antelope museum specimens are either roan (Hippotragus equinus) or sable (Hippotragus niger) antelopes, further reducing the possibilities for obtaining genomic information for this extinct species. While the blue antelope has a rich fossil record from South Africa, climatic conditions in the region are generally unfavorable to the preservation of ancient DNA. Nevertheless, we recovered two blue antelope draft genomes, one at 3.4× mean coverage from a historical specimen (∼200 years old) and one at 2.1× mean coverage from a fossil specimen dating to 9,800-9,300 cal years BP, making it currently the oldest paleogenome from Africa. Phylogenomic analyses show that blue and sable antelope are sister species, confirming previous mitogenomic results, and demonstrate ancient gene flow from roan into blue antelope. We show that blue antelope genomic diversity was much lower than in roan and sable antelope, indicative of a low population size since at least the early Holocene. This supports observations from the fossil record documenting major decreases in the abundance of blue antelope after the Pleistocene-Holocene transition. Finally, the persistence of this species throughout the Holocene despite low population size suggests that colonial-era human impact was likely the decisive factor in the blue antelope's extinction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750129 | PMC |
http://dx.doi.org/10.1093/molbev/msac241 | DOI Listing |
Mov Ecol
August 2024
Wildlife Ecology and Conservation Group, Wageningen University and Research, Droevendaalsesteeg 3a, Wageningen, 6708 PB, The Netherlands.
Background: Animal movement arises from complex interactions between animals and their heterogeneous environment. To better understand the movement process, it can be divided into behavioural, temporal and spatial components. Although methods exist to address those various components, it remains challenging to integrate them in a single movement analysis.
View Article and Find Full Text PDFIntegr Zool
May 2024
Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
The Tibetan antelope (Pantholops hodgsonii), blue sheep (Pseudois nayaur), and Tibetan sheep (Ovis aries) are the dominant small ruminants in the Three-River-Source National Park (TRSNP). However, knowledge about the association between gut microbiota and host adaptability remains poorly understood. Herein, multi-omics sequencing approaches were employed to investigate the gut microbiota-mediated forage adaption in these ruminants.
View Article and Find Full Text PDFCurr Biol
May 2024
Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany. Electronic address:
Low genomic diversity is generally indicative of small population size and is considered detrimental by decreasing long-term adaptability. Moreover, small population size may promote gene flow with congeners and outbreeding depression. Here, we examine the connection between habitat availability, effective population size (N), and extinction by generating a 40× nuclear genome from the extinct blue antelope (Hippotragus leucophaeus).
View Article and Find Full Text PDFNat Commun
April 2024
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest.
View Article and Find Full Text PDFEcology
April 2024
Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, France.
Interspecific interactions can influence species' activity and movement patterns. In particular, species may avoid or attract each other through reactive responses in space and/or time. However, data and methods to study such reactive interactions have remained scarce and were generally limited to two interacting species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!