Exploiting highly efficient electrocatalysts toward hydrogen evolution reaction (HER) has a significant role in the mass production of hydrogen energy through water electrolysis. Herein, ginkgo leaf-like CoN coupled with trace Pt with metallic bond Pt-Co on nickel foam via solvothermal, tannic acid treated, and nitridation procedures for HER (T-Pt-CoN) is developed. It only requires low overpotentials of 31 mV and 27 mV to achieve 10 mA cm in alkaline and neutral electrolytes, respectively, surpassing the benchmark Pt/C and previously reported values. Moreover, it presents excellent long-term stability in the studied media and also can drive overall water splitting under the assistance of sustainable energies. The specific nanostructure favors the acceleration of the electrocatalytic process by exposing abundant active sites and providing numerous mass transport channels during the catalytic process. Moreover, experimental and theoretical calculation demonstrate that the atomic Pt coordinates with Co to form metallic bond Pt-Co also act as crucial role to boost the electrocatalytic performance by optimizing the reaction kinetics for HER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c04090 | DOI Listing |
Chemistry
January 2025
Jadavpur University, Chemistry, 188 Raja S. C. Mallick Road, 700032, Kolkata, INDIA.
Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFNano Lett
January 2025
Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal-sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
The transition metal-catalyzed coupling reaction has renewed the role of ester as an electrophilic partner. In this context, we describe a synergistic Ni/Zn-catalyzed formal transesterification reaction of but-3-enyl esters with tetrahydrofuran and alkyl iodides to give 4-alkoxylbutyl esters. The aromatic and aliphatic esters are both competent electrophiles and thus broaden the substrate scope of esters in coupling reactions, because the electrophiles in previously reported work were strictly limited to aromatic ones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!