In the last several decades, amphibian populations have been declining worldwide. Many factors have been linked to global amphibian decline, including habitat destruction, pollution, introduced species, global environmental changes, and emerging infectious diseases. Recent studies of amphibian skin infections were mainly focused on the presence of chytridiomycosis, neglecting other members of the frogs' skin communities. The diversity pattern of fungal dwellers on the skin of green frogs (Pelophylax esculentus complex) was investigated. A total of 100 adults were sampled from three localities in South Banat (northern Serbia) over three consecutive years and detected fungal dwellers were identified using light microscopy and ITS and BenA gene sequencing. Structures belonging to fungi and fungus-like organisms including a variety of spores and different mycelia types were documented in the biofilm formed on amphibian skin, and are classified into 10 groups. In total, 42 fungal isolates were identified to species, section, or genus level. The difference in mycobiota composition between sampling points (localities and green frog taxa) was documented. The highest number of fungal structures and isolates was recorded on the hybrid taxon P. esculentus and locality Stevanove ravnice. Parental species showed a markedly lower diversity than the hybrid taxon and were more similar in diversity patterns and were placed in the same homogenous group. The locality Stevanove ravnice exhibited more pronounced differences in diversity pattern than the other two localities and was placed in a distinct and separate homogenous group. Among the fungal isolates, the highest isolation frequency was documented for Alternaria alternata, Aspergillus sp. sect. Nigri, Epicoccum nigrum, Fusarium proliferatum, and Trichoderma atroviride. Among the documented species, dematiaceous fungi, causative agents of chromomycosis in amphibians, were also recorded in this research with high isolation frequency. Also, some rare fungal species such as Quambalaria cyanescens and Pseudoteniolina globosa are documented for the first time in this research as microbial inhabitants of amphibian skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-022-02135-0 | DOI Listing |
Biomolecules
December 2024
Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China.
The amphibian skin secretions are excellent sources of bioactive peptides, some of which and their derivatives exhibit multiple properties, including antibacterial and antagonism against bradykinin. A novel peptide Senegalin-2 was isolated from the skin secretions of frog. Senegalin-2 relaxed rat bladder smooth muscle (EC 17.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universidad Nacional del Litoral Facultad de Bioquimica y Ciencias Biologicas, Química Orgánica, Ciudad Universitaria. Paraje el Pozo S/N, Argentina, 3000, Santa Fe, ARGENTINA.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Conservation Genomics Research Unit and Animal, Environmental and Antique DNA Platform, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.
With amphibians still holding the record as the most threatened class of terrestrial vertebrates, their skin microbiota has been shown to play a relevant role in their survival in a fast-changing world. Yet little is known about how abiotic factors associated with different aquatic habitats impact these skin microorganisms. Here we chose the yellow-bellied toad (Bombina variegata), a small anuran that colonizes a wide range of wetland habitats, to investigate how the diversity and composition of both its bacterial and fungal skin communities vary across different habitats and with water characteristics (temperature, pH, and dissolved oxygen) of these habitats.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
Amphibians are enjoyable globally for their culinary value and are increasingly considered alternative protein sources. However, the skin of edible amphibians, especially giant salamanders, is often discarded without much thought. However, this underutilized resource holds significant potential for yielding valuable proteins and bioactive peptides (BPs).
View Article and Find Full Text PDFPigment Cell Melanoma Res
January 2025
Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!