Lossy mode resonance (LMR)-based optical sensors change their wavelength upon contact with substances or gases. This allows developing applications to detect the refractive index of the surrounding medium and even the thickness of the biolayers deposited on the waveguide. In the same way, when acoustic sensors are in contact with a liquid, it is possible to determine parameters, especially mechanical ones such as shape of the particle or molecule, mass load, elastic constants and viscosity of the liquid. This work reports the development of a system that combines LMR with surface acoustic wave (SAW) technologies to characterize a liquid in terms of its refractive index and viscosity simultaneously. Conveniently prepared glucose solutions are used for sensor calibration. The refractive index of the solutions ranges from 1.33 to 1.41 and its viscosity ranges from 1.005 mPa·s to 9 mPa·s, respectively. A sensitivity of 332 nm per RIU has been achieved with the optical sensor while the acoustic sensor has shown a sensitivity of -1.5 dB/(mPa·s). This new combinational concept could be expanded to the development of more demanding applications such as chemical sensors or biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2an01371aDOI Listing

Publication Analysis

Top Keywords

spectral measurements
4
measurements hybrid
4
hybrid lmr
4
lmr platform
4
platform dual
4
dual parameter
4
parameter sensing
4
sensing lossy
4
lossy mode
4
mode resonance
4

Similar Publications

Assessing the health status of vegetation is of vital importance for all stakeholders. Multi-spectral and hyper-spectral imaging systems are tools for evaluating the health of vegetation in laboratory settings, and also hold the potential of assessing vegetation of large portions of land. However, the literature lacks benchmark datasets to test algorithms for predicting plant health status, with most researchers creating tailored datasets.

View Article and Find Full Text PDF

Online analysis of Amazon's soils through reflectance spectroscopy and cloud computing can support policies and the sustainable development.

J Environ Manage

January 2025

Geotechnologies in Soil Sciences Research Group - GeoCiS, Department of Soil Science, Luiz de Queiroz College of Agriculture - Esalq, University of São Paulo - USP, Piracicaba, São Paulo, Brazil. Electronic address:

Analyzing soil in large and remote areas such as the Amazon River Basin (ARB) is unviable when it is entirely performed by wet labs using traditional methods due to the scarcity of labs and the significant workforce requirements, increasing costs, time, and waste. Remote sensing, combined with cloud computing, enhances soil analysis by modeling soil from spectral data and overcoming the limitations of traditional methods. We verified the potential of soil spectroscopy in conjunction with cloud-based computing to predict soil organic carbon (SOC) and particle size (sand, silt, and clay) content from the Amazon region.

View Article and Find Full Text PDF

Effect of siponimod on retinal thickness, a marker of neurodegeneration, in participants with SPMS: Findings from the EXPAND OCT substudy.

Mult Scler Relat Disord

January 2025

Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland.

Background: People with MS show abnormal thinning of the retinal layers, which is associated with clinical disability and brain atrophy, and is a potential surrogate marker of neurodegeneration and treatment effects.

Objective: To evaluate the utility of retinal thickness as a surrogate marker of neurodegeneration and treatment effect in participants with secondary progressive MS (SPMS) from the optical coherence tomography (OCT) substudy of the EXPAND Phase 3 clinical trial (siponimod versus placebo).

Methods: In the OCT substudy population (n = 159), treatment effects on change in the average thickness of the retinal layer, peripapillary retinal nerve fiber layer (pRNFL), and combined macular ganglion cell and inner plexiform layers (GCIPL) were analyzed by high-definition spectral domain OCT at months 3, 12, and 24.

View Article and Find Full Text PDF

Background: While the effects of sleep deprivation on cognitive function are well-documented, its impact on high-intensity endurance performance and underlying neural mechanisms remains underexplored, especially in the context of search and rescue operations where both physical and mental performance are essential. This study examines the neurophysiological basis of sleep deprivation on high-intensity endurance using electroencephalography (EEG). In this crossover study, twenty firefighters were subjected to both sleep deprivation (SD) and normal sleep conditions, with each participant performing endurance treadmill exercise the following morning after each condition.

View Article and Find Full Text PDF

SnHPO: A Layered Tin(II) Phosphate with Enhanced Birefringence.

Inorg Chem

January 2025

College of Physics, Qingdao University, National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao 266071, China.

As promising optoelectronic functional materials in the short-wavelength spectral region, such as ultraviolet (UV) and deep UV, phosphates have recently received increased attention. However, phosphate materials commonly suffer from limited birefringence owing to the highly symmetrical PO tetrahedra. We herein report a layered tin(II) phosphate with improved birefringence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!