Interheteromolecular Hyperconjugation Boosts (De)hydrogenation for Reversible H Storage.

ChemSusChem

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

Published: January 2023

Interheteromolecular hyperconjugation is ubiquitous in organic systems, affecting bond length, dipole moments, conformations and so on, while its effect on (de)hydrogenation reactivity in a heterogeneous thermo-catalytic system has rarely been explored. Herein, the N-heterocycles containing a benzene ring and aliphatic chain [N-ethylcarbazole (NEC) and N-propylcarbazole (NPC)] were utilized to study the correlation between interheteromolecular hyperconjugation and catalytic (de)hydrogenation. Density functional theory calculations, variable-temperature H nuclear magnetic resonance spectroscopy, and catalytic experiments showed that the presented hyperconjugation between NEC and NPC weakened the electron cloud density of aromatic rings and thus facilitated the reactivity with hydrogen featuring unpaired electrons. Therefore, an extremely low temperature of 80 °C was enough for the hydrogenation. Moreover, this interheteromolecular hyperconjugation was general in other N-heterocycles (e. g., N-methyindole and NPC) and was also effective to (de)deuterate as revealed by isotope experiments. This work expands the application of interheteromolecular hyperconjugation to heterogeneous thermocatalysis for reversible H storage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202201512DOI Listing

Publication Analysis

Top Keywords

interheteromolecular hyperconjugation
20
reversible storage
8
interheteromolecular
5
hyperconjugation
5
hyperconjugation boosts
4
boosts dehydrogenation
4
dehydrogenation reversible
4
storage interheteromolecular
4
hyperconjugation ubiquitous
4
ubiquitous organic
4

Similar Publications

Interheteromolecular Hyperconjugation Boosts (De)hydrogenation for Reversible H Storage.

ChemSusChem

January 2023

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

Interheteromolecular hyperconjugation is ubiquitous in organic systems, affecting bond length, dipole moments, conformations and so on, while its effect on (de)hydrogenation reactivity in a heterogeneous thermo-catalytic system has rarely been explored. Herein, the N-heterocycles containing a benzene ring and aliphatic chain [N-ethylcarbazole (NEC) and N-propylcarbazole (NPC)] were utilized to study the correlation between interheteromolecular hyperconjugation and catalytic (de)hydrogenation. Density functional theory calculations, variable-temperature H nuclear magnetic resonance spectroscopy, and catalytic experiments showed that the presented hyperconjugation between NEC and NPC weakened the electron cloud density of aromatic rings and thus facilitated the reactivity with hydrogen featuring unpaired electrons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!