Background: Because of their implications in several pathological conditions, α4β2* nicotinic acetylcholine receptors (nAChRs) are potential targets for the treatment of nicotine dependence, pain, and many psychiatric and neurodegenerative diseases. However, they exist in various subtypes, and finding selective tools to investigate them has proved challenging. The nicotinic receptor agonist, 5-iodo-A-85380 (5IA), has helped in delineating the function of β2-containing subtypes in vitro; however, much is still unknown about its behavioral effects. Furthermore, its effectiveness on α6-containing subtypes is limited.
Aims: To investigate the effects of 5IA on nociception (formalin, hot-plate, and tail-flick tests), locomotion, hypothermia, and conditioned reward after acute and repeated administration, and to examine the potential role of β2 and α6 nAChR subunits in these effects. Lastly, its selectivity for expressed low sensitivity (LS) and high sensitivity (HS) α4β2 receptors is investigated.
Results: 5IA dose-dependently induced hypothermia, locomotion suppression, conditioned place preference, and antinociception (only in the formalin test but not in the hot-plate or tail-flick tests). Furthermore, these effects were mediated by β2 but not α6 nicotinic subunits. Finally, we show that 5-iodo-A-85380 potently activates both stoichiometries of α4β2 nAChRs with differential efficacies, being a full agonist on HS α4(2)β2(3) nAChRs, and a partial agonist on LS α4(3)β2(2) nAChRs and α6-containing subtypes as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/02698811221132214 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817006 | PMC |
Connect Tissue Res
December 2024
Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain.
Purpose: After peripheral nerve injury (PNI), prolonged denervation of the target muscle prevents adequate reinnervation even if the nerve is repaired. The aim of this work is to analyze the effect of intramuscular Platelet-Rich Plasma (PRP) in a denervated muscle due to PNI.Materials and.
View Article and Find Full Text PDFJ Orofac Orthop
December 2024
Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, 100050, Beijing, China.
Purpose: We aimed to investigate early effects of regulating alpha‑7 nicotinic acetylcholine receptor (α7nAChR) agonists and antagonists on maxillary expansion in mice.
Methods: We allocated 36 six-week-old male C57BL/6J mice into three group: 1) expansion alone, 2) expansion plus the α7nAChR-specific agonist 3‑(2,4-dimethoxybenzylidene)-anabaseine dihydrochloride (GTS-21), and 3) expansion plus alpha-bungarotoxin (α-BTX), a competitive antagonist of α7nAChR. The groups were daily injected with saline, GTS-21 (4 mg/kg/day) or α‑BTX (1 mg/kg/day), respectively, from days 0-7.
Toxins (Basel)
November 2024
Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif-sur-Yvette, Cedex, France.
Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.
Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.
View Article and Find Full Text PDFLife Sci
December 2024
State Key Laboratory of Natural Medicines, School of life science and technology, China Pharmaceutical University, Nanjing 211000, PR China. Electronic address:
Background And Purpose: Sepsis is a condition capable of causing systemic inflammation and metabolic reprogramming. Previous studies have shown that sinomenine (SIN) can mitigate sepsis by reducing inflammation, while the effect on metabolic reprogramming is unclear. The aim of this study is to investigate the function of SIN in metabolic reprogramming in sepsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!