Non-fullerene-based chromophores with end-capped acceptor modification used in organic solar cells (OSCs) have proven to offer improved performance. Therefore, eight unique benzothiophene-based molecules (D2-D9) were designed by the end-capped acceptor manipulation of a reference molecule (R1). Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations at the B3LYP level were performed to investigate various parameters such as the optical properties, frontier molecular orbitals (FMOs), transition density matrix (TDM), binding energy, density of states (DOS), open-circuit voltage ( ), and reorganization energies of electrons ( ) and holes ( ), to better understand the optoelectronic properties of the newly designed compounds. All the derivatives had broader absorption spectra of 737.562-700.555 nm with a reduced energy gap of 2.132-1.851 eV compared to those of the reference (719.082 nm), except for D8 and D9. A comparable value of and lower reorganization energies were found in the derivatives compared to those of R1. Within the studied compounds, D3 was predicted to be a good optoelectronic material for environmentally friendly organic solar cells (EFOSCs) because of its superior optoelectronic capabilities, low-energy band gap (1.851 eV), highest values of 794.516 and 744.784 nm in chloroform and the gas phase, respectively, and lowest transition energy (1.561 eV) than those of the reference and the other derivatives. Subsequently, end-capped acceptor modification was proven to be an effective method to achieve desired optoelectronic characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552528PMC
http://dx.doi.org/10.1039/d2ra04473kDOI Listing

Publication Analysis

Top Keywords

organic solar
12
solar cells
12
end-capped acceptor
12
acceptor modification
8
density functional
8
functional theory
8
reorganization energies
8
exploration interesting
4
interesting photovoltaic
4
photovoltaic behavior
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!