Similar Publications

Axially Chiral Phenanthroline Ligand-Enabled Pd-Catalyzed Asymmetric Amination and Alkylation of Aryl-Substituted Morita-Baylis-Hillman Adducts.

Org Lett

December 2024

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.

Highly enantioselective allylic amination and alkylation of racemic sterically hindered aryl-substituted Morita-Baylis-Hillman (MBH) adducts have been achieved by using an in situ formed Pd-catalyst from an axially chiral phenanthroline ligand. This dynamic kinetic asymmetric transformation (DYKAT) is compatible with cyclic and acyclic secondary amines, dialkyl malonates, β-keto esters, acetylacetone, and malononitrile, affording the corresponding chiral products, such as β-amino acid esters, in up to 95% yield and with up to a 99:1 enantiomeric ratio.

View Article and Find Full Text PDF

Allyl Cellulose (AC) was synthesized using allyl bromide in sodium hydroxide (NaOH)/urea aqueous solution. By employing a molar ratio of 6:1 of allyl bromide/cellulose, low-degree of substitution (DS) water-soluble AC (AC) was obtained (DS = 0.67).

View Article and Find Full Text PDF

5-methoxy-,-dimethyltrytpamine (5-MeO-DMT) analogs are used as recreational drugs, but they are also being developed as potential medicines, warranting further investigation into their pharmacology. Here, we investigated the neuropharmacology of 5-MeO-DMT and several of its -alkyl, -allyl, and 2-methyl analogs, with three major aims: 1) to determine in vitro receptor profiles for the compounds, 2) to characterize in vitro functional activities at serotonin (5-HT) 2A receptors (5-HT) and 1A receptors (5-HT), and 3) to examine the influence of 5-HT on 5-HT-mediated psychedelic-like effects in the mouse head twitch response (HTR) model. In vitro receptor binding and functional assays showed that all 5-MeO-DMT analogs bind with high affinity and activate multiple targets (e.

View Article and Find Full Text PDF

Asymmetric Synthesis of Dialkyl Carbinols by Ni-Catalyzed Reductive-Oxidative Relay of Distinct Alkenes.

Adv Sci (Weinh)

December 2024

Guangming Advanced Research Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology, Shenzhen Grubbs Institute, Shenzhen, Guangdong, 518055, P. R. China.

Enantioenriched unsymmetric dialkyl carbinol derivatives are of importance in natural products, bioactive molecules, and functional organic materials. However, the catalytic asymmetric synthesis of dialkyl carbinol derivatives remains challenging due to the similar steric and electronic properties of two alkyl substituents. Herein, an unprecedented synthesis of chiral dialkyl carbinol ester derivatives from Ni-catalyzed reductive-oxidative relay cross-coupling of two alkenes is developed for the first time.

View Article and Find Full Text PDF

We introduce a method for the ()-selective aminoallylation of a range of ketones to prepare allylic 1,2-amino tertiary alcohols with excellent diastereo- and enantioselectivity. Copper-catalyzed reductive couplings of 2-azatrienes with aryl/alkyl and dialkyl ketones proceed with Ph-BPE as the supporting ligand, generating -amino alcohols with >98% ()-selectivity under mild conditions. The utility of the products is highlighted through several transformations, including those that leverage the ()-allylic amine moiety for diastereoselective reactions of the alkene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!