Similar Publications

Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.

View Article and Find Full Text PDF

Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.

View Article and Find Full Text PDF

Pulp chamber and root canal obliteration (PCO/RCO) presents a challenge for clinicians when nonsurgical endodontic treatment is indicated. Guided endodontics (GE) aims to precisely locate the root canal (RC) system while preserving as much pericervical dentin as possible. GE involves integrating cone-beam computed tomography (CBCT) of the affected tooth with a digital impression of the maxillary/mandibular arch, allowing for careful planning of the drilling path to the RC system through a three-dimensional (3D) static guide.

View Article and Find Full Text PDF

Transcatheter mitral valve replacement (TMVR) may emerge as a surgical alternative for high-risk patients with severe mitral annular calcification (MAC), yet several questions remain to be addressed. We present the case of a 67-year-old high-risk female patient with severe MAC (MAC score = 8) and mitral stenosis (effective orifice area = 121.3 mm).

View Article and Find Full Text PDF

Objective: The study aimed to evaluate the application value of computed tomography (CT) three-dimensional (3D) reconstruction technology in identifying benign and malignant lung nodules and characterizing the distribution of the nodules.

Methods: CT 3D reconstruction was performed for lung nodules. Pathological results were used as the gold standard to compare the detection rates of various lung nodule signs between conventional chest CT scanning and CT 3D reconstruction techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!