Materials with promising mechanical performance generally demonstrate requirements for the critical sizes of their key building units, entanglements and crystal grains. Herein, only with van der Waals interaction, viscoelasticity with broad tunability has been facilely achieved below the critical size limits: the dimers of ∼1 nm polyhedral oligomeric silsesquioxane (POSS) with < 4 kD and size < 5 nm, which demonstrate distinct material physics compared to that of polymer nanocomposites of POSS. The dimeric POSSs are confirmed by scattering and calorimetrical measurements to be intrinsic glassy materials with glass transition temperatures ( s) lower than room temperature. From rheological studies, their viscoelasticity can be broadly tuned through the simple tailoring of the dimer linker structures above their . In dimer bulks, each POSS cluster is spatially confined by the POSSs from other dimers and therefore, the correlation of the dynamics of the two linked POSS clusters, which, as indicated by dynamics analysis, is regulated by the length and flexibilities of linkers, contributes to the caging dynamics of POSS confined by their neighbours and the resulting unique viscoelasticity. Our discoveries update the understanding of the structural origin of viscoelasticity and open avenues to fabricate structural materials from the design of sub-nanoscale building blocks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557216 | PMC |
http://dx.doi.org/10.1039/d2sc03651g | DOI Listing |
J Assist Reprod Genet
January 2025
Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Purpose: This study is to evaluate duration of oocyte cryostorage and association with thaw survival, fertilization, blastulation, ploidy rates, and pregnancy outcomes in patients seeking fertility preservation.
Methods: Retrospective cohort study to evaluate clinical outcomes in patients who underwent fertility preservation from 2011 to 2023 via oocyte vitrification for non-oncologic indications. Primary outcome was thaw survival rate.
Langmuir
January 2025
Univ. Rouen Normandie, Normandie Univ., SMS, UR 3233, F-76000 Rouen, France.
It has been shown that depositing ketoprofen as thin films on glass substrates has a stabilizing effect on the amorphous state of ketoprofen. Polyethylene glycol ( = 6000 g/mol) was mixed with ketoprofen in a wide range of concentrations. Amorphous thin films were prepared by spin coating and subjected to storage conditions with different levels of relative humidity.
View Article and Find Full Text PDFInt J Pharm
December 2024
Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil. Electronic address:
This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.
ACS Macro Lett
January 2025
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Poly(lactide) (PLA) is a promising biodegradable polymer with potential applications in single-use packaging. However, its use is limited by brittleness, and its biodegradability is restricted to industrial compost conditions due in part to an elevated glass transition temperature (). We previously showed that addition of a poly(ethylene-oxide)--poly(butylene oxide) diblock copolymer (PEO-PBO) forms macrophase-separated rubbery domains in PLA that can impart significant toughness at only 5 wt %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!