(Makino) T. C. Chen is an annual plant in the Fabaceae. This plant can be used in a tonic, as a diuretic, and for the prevention of obesity due to the presence of anthraquinones, flavonoids, and lipase inhibitors isolated from the aerial parts and seeds (Hatano et al. 1997). In June to September 2019, a severe foliar blight was observed on the leaves of 1-year-old landrace plants in Qinglong (40.41°N, 118.95°E) in Qinhuangdao City, Hebei Province, China. The incidence of leaf blight was as high as 67% in the fields (n≥3). Symptoms began with small, brown spots at the margins and tips of leaves, with gray or yellowish-brown spots in the center of leaves. The spots gradually expanded to irregular large yellowish-brown lesions, and the leaves gradually withered. The pathogen was isolated from 20 leaves with typical symptoms from 10 individual plants. Leaf pieces (2 to 4 mm) were excised from the junction of diseased and healthy tissues, disinfected in 75% ethanol for 15 s, rinsed in sterile distilled water, and placed on potato dextrose agar (PDA) plates. Colonies of 69% of the isolated fungi had round margins, and the olive-green fluffy aerial mycelia began to sporulate after 3 days at 28°C. On potato carrot agar (PCA), pure cultures formed yellowish brown mycelium with a light-colored, taupe-white center. Conidiophores were brown, simple or branched, and produced numerous conidia in short chains of three to six conidia. The conidia (n=50) were inverted pear-shaped or orbicular-ovate, light brown to brown, with a cylindrical short beak at the tip, and 19.9 to 30.4 μm (mean 25.4±3.6 μm) × 10.4 to 17.1 μm (mean 13.4±1.9 μm), with two to four transverse septa and zero to three longitudinal septa. The fungal isolates U-2, U-2-1, and U-2-2 were further characterized by sequencing of the rDNA ITS (MN712241, MZ781312, MZ781313), actin (ACT) (MN752246, MZ593671, MZ593672), calmodulin (CAL) (ON811636 to ON811638), ATPase (ON872785 to ON872787), and Alt a 1 (ON792172 to ON792174) genes using ITS1/ITS4, ACT-512F/ACT-738R, CALDF1/CALDR1, ATPDF1/ATPDR1, and Alt-for/Alt-rev primers for PCR amplification, respectively (Yang et al. 2009; Elfar et al. 2018). The sequences of the amplicons showed 99% to 100% identity with isolates: ITS (569/570 bp; MK560480 ), ACT (243/243 bp; MK593135), Alt a 1 (509/512 bp; MK593137), CAL (717/721 bp; MG925128), ATPase (1196/1197 bp; MG740623). Therefore, based on morphological characteristics and DNA sequence data, the isolates were identified as . For pathogenicity tests, leaves on 10 healthy 1-year-old potted plants were inoculated by wounding with a sterile needle and sprayed with a conidial suspension (2×10 spores/mL). Sterile water was used as the control. Inoculated plants were incubated in a greenhouse at 28°C with a 12 h photoperiod (75% to 80% relative humidity). The pathogenicity test was repeated three times. Lesions were observed on inoculated plants seven to nine days after inoculation, but no lesions were observed on control plants. was successfully re-isolated from the symptomatic leaves and identified by morphology and sequencing of PCR amplicons. has caused brown leaf spot on kiwifruit (Li et al. 2019) in China and pigeonpea (Sharma et al. 2012) in India. To our knowledge, this is the first report of causing leaf blight on in China. This new finding is essential in the diagnosis and management in field production.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-07-22-1575-PDNDOI Listing

Publication Analysis

Top Keywords

leaf blight
12
inoculated plants
8
lesions observed
8
leaves
7
plants
6
brown
6
report leaf
4
blight
4
blight caused
4
china
4

Similar Publications

Botryosphaeria stem blight is a fungal disease of blueberry caused by members of the Botryosphaeriaceae family, which can lead to rapid wilting of leaves and stems, often resulting in significant yield loss and even plant death. Botryosphaeria stem blight is a major disease in Alabama, however, information on the distribution and causal pathogens for stem blight in Alabama is limited. This study surveyed blueberry farms in Alabama and nearby parts of Georgia and Mississippi to reveal the occurrence, species identities, and virulence of causal pathogens for Botryosphaeria stem blight.

View Article and Find Full Text PDF

Potato late blight leaf detection in complex environments.

Sci Rep

December 2024

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650504, China.

Potato late blight is a common disease affecting crops worldwide. To help detect this disease in complex environments, an improved YOLOv5 algorithm is proposed. First, ShuffleNetV2 is used as the backbone network to reduce the number of parameters and computational load, making the model more lightweight.

View Article and Find Full Text PDF

First Report of Causing Leaf Blight on in China.

Plant Dis

December 2024

Chiang Mai University, Biology, Room 2410/00, SCB2 building, Faculty of Science, Chiang Mai University,239 Huay Kaew Road, Suthep, Muang, Chiang Mai Province, Thailand, 50200;

Peacock plant (Calathea orbifolia (Linden) H.A.Kenn.

View Article and Find Full Text PDF

First Report of Leaf Spot Caused by on Invasive Weed in Korea.

Plant Dis

December 2024

Korea University, Environmental Science & Ecological Engineering, Seoul, Seoul, Korea (the Republic of), 02841;

Cerastium glomeratum Thuill., known as sticky mouse-ear chickweed, is native to Europe and has become naturalized in the wild on most continents. After its accidental introduction to Korea around the 1980s, it quickly became one of the dominant invasive weeds on the Korean peninsula and is now considered a significant threat to the Korean agroecosystem (Park et al.

View Article and Find Full Text PDF

First report of foliar blight of castor bean caused by in Sinaloa, Mexico.

Plant Dis

December 2024

Universidad Autónoma de Occidente, CIENCIAS NATURALES Y EXACTAS , Carret. Internacional y Boulevard Macario Gaxiola, S/N, Los Mochis, Los Mochis, Sinaloa, Mexico, 81200.

Castor bean (Ricinus communis) is cultivated agriculturally for oil and ornamentally for its bright foliage and seed. Ornamental castor bean has naturalized in many areas of the world, including the state of Sinaloa, Mexico, where it is not planted commercially. In a survey conducted in 2019 in Sinaloa, wild castor bean was found widely affected by a foliar blight with symptoms similar to Alternaria ricini previously described in the United States (Stevenson 1945) and in the state of Chiapas, Mexico (López-Guillén et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!