A novel constructed wetland based on iron carbon substrates: performance optimization and mechanisms of simultaneous removal of nitrogen and phosphorus.

Environ Sci Pollut Res Int

Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.

Published: February 2023

In recent years, the combination of iron carbon micro-electrolysis (ICME) with constructed wetlands (CWs) for removal of nitrogen and phosphorus has attracted more and more attention. However, the removal mechanisms by CWs with iron carbon (Fe-C) substrates are still unclear. In this study, the Fe-C based CW (CW-A) was established to improve the removal efficiencies of nitrogen and phosphorus by optimizing the operating conditions. And the removal mechanisms of nitrogen and phosphorus were explored. The results shown that the removal rates of COD, NH-N, NO-N, TN, and TP in CW-A could reach up to 84.4%, 94.0%, 81.1%, 86.6%, and 84.3%, respectively. Wetland plants and intermittent aeration have dominant effects on the removal of NH-N, while the removal efficiencies of NO-N, TN, and TP were mainly affected by Fe-C substrates, wetland plants, and HRT. XPS analysis revealed that Fe(0)/Fe and their valence transformation played important roles on the pollutants removal. High-throughput sequencing results showed that Fe-C substrates and wetland plants had considerable impacts on the microbial community structures, such as richness and diversity of microorganism. The relative abundance of autotrophic denitrification bacteria (e.g., Denitatsoma, Thauera, and Sulfuritalea) increased in CW-A than CW-C. The electrons and H/[H] produced from Fe-C substrates were utilized by autotrophic denitrification bacteria for NO-N reduction. Microbial degradation was the main removal mechanism of nitrogen in CW-A. Removal efficiency of phosphorus was enhanced resulted from the reaction of phosphate with iron ion. The application of CWs with Fe-C substrates and plants presented great potential for simultaneous removal of nitrogen and phosphorus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-23754-7DOI Listing

Publication Analysis

Top Keywords

nitrogen phosphorus
20
fe-c substrates
20
iron carbon
12
removal
12
removal nitrogen
12
wetland plants
12
simultaneous removal
8
removal mechanisms
8
removal efficiencies
8
substrates wetland
8

Similar Publications

Diazotrophic cyanobacteria can overcome nitrogen (N)-limitation by fixing atmospheric N; however, this increases their energetic, iron, molybdenum, and boron costs. It is unknown how current and historic N-supplies affect cyanobacterial elemental physiology beyond increasing demands for elements involved in N-fixation. Here, we examined the changes in pigment concentrations, N-storage, and the ionome (i.

View Article and Find Full Text PDF

Background: Age-related changes in physiological parameters are crucial in understanding the health and performance of working dogs, particularly those in demanding roles such as military and law enforcement. However, limited research exists on how aging affects the hematological and biochemical health of these dogs.

Aim: This study aims to characterize age-related variations in hematological and biochemical parameters in working Belgian Shepherd dogs to provide insights that could inform health management strategies for these animals.

View Article and Find Full Text PDF

Improving fire retardancy and mechanical properties of polyurethane elastomer by acid hydrotropic lignin.

Int J Biol Macromol

December 2024

USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA. Electronic address:

Improving flame retardancy and mechanical strength of lignin-containing polyurethane is a great challenge. In this study, lignin with favorable reactivity and dispersity was extracted from poplar using acid hydrotrope p-TsOH in EtOH. The extracted acid hydrotrope lignin (AHL) was subsequently functionalized with nitrogen and phosphorus (FHL) and reacted with isocyanate to fabricate a fire-retardant polyurethane (FHL-PU).

View Article and Find Full Text PDF

The aim of this study was to evaluate the changes in calcium, phosphorus and some biochemical parameters in dogs with open and closed cervix pyometra, which was then compared with a control group. A total of 62 bitches of age group 5-10 years old irrespective of breed were enrolled into the study. Control group consisted of 22 bitches which were clinically healthy and in luteal phase of the estrus cycle.

View Article and Find Full Text PDF

Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!