Barnacle cement proteins are multi-protein complexes composed of a series of functionally related synergistic proteins that enable barnacles to adhere strongly and consistently to various underwater substrates. There is no post-translational modification of barnacle cement proteins, which provides a possibility for the synthesis of similar adhesive materials. Balcp-20 k has four repetitive sequences with multiple conserved cysteine groups. Whether these repeats are separate functional units and the role of cysteine in adhesion is not clear. In order to investigate the adhesion properties of Balcp-20 k, we amplified and expressed R4 (DHLACNAKHPCWHKHCDCFC), which is a quadruple repeat of Balcp-20 k's fourth repetitive sequence, and S0R4 (DHLASNAKHPSWHKHSDSFS), all cysteine of R4 replaced by serine. Analysis showed that R4 had a similar structure to Balcp-20 k, and the amyloid fibrils structure formed by self-assembly of R4 played an important role in improving the adhesion strength. The absence of disulfide bonds in S0R4 prevents self-assembly, and the failure of self-assembly after the reduction of disulfide bonds of R4 by DTT indicates that disulfide bonds play an important role in self-assembly. With adhesion and coating analysis, it was found that R4 has good adhesion on different materials surfaces, which is better than Balcp-20 k, while S0R4 has weak adhesion, which is only better than BSA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10126-022-10177-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!