Background: Quantification of intramyocardial blood volume (IMBV), the fraction of myocardium that is occupied by blood, is a promising Index to measure microcirculatory functions. In previous large animal SPECT/CT studies injected with Tc-labeled Red Blood Cell (RBC) and validated by ex vivo microCT, we have demonstrated that accurate IMBV can be measured. In this study, we report the data processing methods and results of the first-in-human pilot study.

Methods: Data from three subjects have been included to date. Each subject underwent rest and adenosine-induced stress Tc-RBC SPECT/CT on a dedicated cardiac system with both non-contrast and contrast-enhanced CT acquired. Corrections of attenuation (AC) and scatter (SC), respiratory and cardiac gating, and partial volume correction (PVC) were applied. We also performed automatic segmentation and registration approach based on the blood pool topology in both SPECT and CT images.

Results: The quantified IMBV across all subjects under resting conditions were 35.0% ± 3.3% for the end-diastolic phase and 24.1% ± 2.7% for the end-systolic phase. The cycle-dependent change in IMBV (ΔIMBV) between diastolic and systolic phases was 31.5% ± 3.0%. Under stress, IMBV were 40.6% ± 4.2% for the end-diastolic phase and 26.5% ± 2.8% for the end-systolic phase, and ΔIMBV was 34.7% ± 7.4%.

Conclusions: It is feasible to quantify IMBV in resting and stress conditions in human studies using SPECT/CT with Tc-RBC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12350-022-03123-0DOI Listing

Publication Analysis

Top Keywords

quantification intramyocardial
8
intramyocardial blood
8
blood volume
8
tc-rbc spect/ct
8
end-diastolic phase
8
end-systolic phase
8
imbv
6
blood
5
volume tc-rbc
4
spect/ct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!