For most electrodes fabricated with carbon, transition metal compounds, or conductive polymers, the capacitance may deteriorate with cyclic charging and discharging. Thus, an electrochemically stable supercapacitor has long been pursued by researchers. In this work, the hierarchical structure of balsa wood is preserved in the converted carbon which is used as a supporting framework to fabricate electrodes for supercapacitors. Well-grown carbon nanotubes (CNTs) on interior and exterior surfaces of balsa carbon channels provide two advantages including 1) offering more specific surface area to boost capacitance via electric double layer capacitance and 2) offering more active Fe and Ni sites to participate in the redox reaction to enhance capacitance of the balsa carbon/CNTs electrode. The balsa carbon/CNTs demonstrate an excellent area capacitance of 1940 mF cm . As active sites on Ni and Fe catalysts and inner walls of CNTs are gradually released, the capacitance increases 66% after 4000 charge-discharge cycles. This work brings forward a strategy for the rational design of high-performance biomass carbon coupled with advanced nanostructures for energy storage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202200272DOI Listing

Publication Analysis

Top Keywords

energy storage
8
carbon coupled
8
carbon nanotubes
8
active sites
8
balsa carbon/cnts
8
carbon
7
capacitance
6
balsa
5
self-promoting energy
4
storage balsa
4

Similar Publications

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

Cellulose-Based Materials and Their Application in Lithium-Sulfur Batteries.

Polymers (Basel)

January 2025

Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues.

View Article and Find Full Text PDF

Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted by the variability of solar radiation intensity, which is influenced by external environmental factors. To address this issue, this study created a new composite fiber that not only possesses solar energy conversion and storage capabilities but also facilitates crude oil removal.

View Article and Find Full Text PDF

To solve the energy crisis and environmental issues, it is essential to create effective and sustainable energy conversion and storage technologies. Traditional materials for energy conversion and storage however have several drawbacks, such as poor energy density and inadequate efficiency. The advantages of MOF-based materials, such as pristine MOFs, also known as porous coordination polymers, MOF composites, and their derivatives, over traditional materials, have been thoroughly investigated.

View Article and Find Full Text PDF

Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost importance to develop a sensor that is capable of accurately monitoring the internal temperature of lithium-ion batteries. External sensors are subject to the necessity for additional space and ancillary equipment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!