AI Article Synopsis

  • The paper discusses a new method for calculating nuclear magnetic resonance shielding constants using hybrid multiconfigurational short-range density functional theory (srDFT), which includes a special case of Hartree-Fock srDFT (HF-srDFT).
  • It compares the performance of this new method, called CAS-srDFT, against traditional approaches like DFT and CASSCF using adenine and thymine as test cases, showing that CAS-srDFT generally provides the most accurate results.
  • The findings suggest that incorporating exact exchange is crucial for accurately predicting shielding constants, especially in systems with significant static correlation like transition metal complexes, where CAS-srDFT outperforms previous methods.

Article Abstract

In this paper, we present the theory and implementation of nuclear magnetic resonance shielding constants with gauge-including atomic orbitals for the hybrid multiconfigurational short-range density functional theory model. As a special case, this implementation also includes Hartree-Fock srDFT (HF-srDFT). Choosing a complete-active space (CAS) wave function as the multiconfigurational parameterization of the wave function, we investigate how well CAS-srDFT reproduces experimental trends of nuclear shielding constants compared to DFT and complete active space self-consistent field (CASSCF). Calculations on the nucleobases adenine and thymine show that CAS-srDFT performs on average the best of the tested methods, much better than CASSCF but only marginally better than HF-srDFT. The performance, compared to regular DFT, is similar when functionals containing exact exchange are used. We generally find that the inclusion of exact exchange is important for an accurate description of the shielding constants. In cases where no exact exchange is included, we observe that the HF- and CAS-srDFT often outperform regular DFT. For calculations on transition metal nuclei in organometallic compounds with significant static correlation, the CAS-srDFT method again outperforms CASSCF compared to experimental shielding constants, and the change from HF-srDFT is substantial. In conclusion, the static correlation posed by the metal complexes seems to be captured by CAS-srDFT, which is promising since this type of correlation is not well described by regular DFT.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0106422DOI Listing

Publication Analysis

Top Keywords

shielding constants
20
regular dft
12
exact exchange
12
multiconfigurational short-range
8
short-range density
8
density functional
8
functional theory
8
nuclear magnetic
8
magnetic resonance
8
resonance shielding
8

Similar Publications

Field switching of microfabricated metamagnetic FeRh MRI contrast agents.

Sci Rep

January 2025

Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.

In a step towards generating switchable MRI cellular labels, we demonstrate in-situ field switching of micron scale metamagnetic Iron-Rhodium (FeRh) thin film particles. A thin-film (200 nm) FeRh sample was fabricated and patterned into an array of progressively smaller squares with sizes ranging from 500 μm down to 1 μm. The large first order phase change from antiferromagnetic to ferromagnetic state was characterized using vibrating sample magnetometry, magnetic force microscopy, and MRI.

View Article and Find Full Text PDF

Using NMR Spectroscopy to Evaluate Metal-Ligand Bond Covalency for the f Elements.

Acc Chem Res

January 2025

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.

ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.

View Article and Find Full Text PDF

Observations from multisensory body illusions indicate that the body representation can be adapted to changing task demands, e.g., it can be expanded to integrate external objects based on current sensorimotor experience (embodiment).

View Article and Find Full Text PDF

Ab Initio Rotational and Vibrational Spectroscopy of CH Radicals at the Coupled Cluster Level.

J Phys Chem A

January 2025

Department of Chemistry, University of California, Davis, One Shields Ave., Davis, California 95616, United States.

Combustion and pyrolysis processes of allene and propyne are known to involve radicals with the structural formula CH, the most stable of which is the classic resonance-stabilized allyl radical. In addition to allyl, four other isomers of CH are possible: the propene derivatives -1-propenyl, -1-propenyl, and 2-propenyl, as well as the cyclopropane derivative cyclopropyl. Among these 5 species, the allyl radical has been extensively studied both theoretically and spectroscopically; however, little is known about the spectroscopy of the cyclopropyl radical, and virtually no experimental spectroscopic data are available for the remaining three.

View Article and Find Full Text PDF

Stress Granule Induction in Rat Retinas Damaged by Constant LED Light.

Invest Ophthalmol Vis Sci

January 2025

Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.

Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!