Electromagnetic pickup noise in the tokamak environment imposes an imminent challenge for measuring weak diagnostic photocurrents in the nA range. The diagnostic signal can be contaminated by an unknown mixture of crosstalk signals from coils powered by currents in the kA range. To address this issue, an algorithm for robust identification of linear multi-input single-output (MISO) systems has been developed. The MISO model describes the dynamic relationship between measured signals from power sources and observed signals in the diagnostic and allows for a precise subtraction of the noise component. The proposed method was tested on experimental diagnostic data from the DIII-D tokamak, and it has reduced noise by up to 20 dB in the 1-20 kHz range.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0100988DOI Listing

Publication Analysis

Top Keywords

robust identification
8
pickup noise
8
identification multiple-input
4
multiple-input single-output
4
single-output system
4
system response
4
response efficient
4
efficient pickup
4
noise
4
noise removal
4

Similar Publications

Identification of DNA methylation signatures in follicular-patterned thyroid tumors.

Pathol Res Pract

December 2024

Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Precision Pathology of Neoplasia Research Group, Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Background And Aims: Follicular-patterned thyroid tumors (FPTTs) are frequently encountered in thyroid pathology, encompassing follicular adenoma (FA), follicular thyroid carcinoma (FTC), noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), and follicular variant of papillary thyroid carcinoma (fvPTC). Recently, a distinct entity termed differentiated high-grade thyroid carcinoma has been described by the 5th edition of the WHO classification of the thyroid tumors, categorized as either high-grade fvPTC, high-grade FTC or high-grade oncocytic carcinoma of the thyroid (OCA). Accurate differentiation among these lesions, particular between the benign (FA), borderline (NIFTP) and malignant neoplasms (FTC and fvPTC), remains a challenge in both histopathological and cytological diagnoses.

View Article and Find Full Text PDF

Introduction Incorporation of mammographic density to breast cancer risk models could improve risk stratification to tailor screening and prevention strategies according to risk. Robust evaluation of the value of adding mammographic density to models with comprehensive information on questionnaire-based risk factors and polygenic risk score is needed to determine its effectiveness in improving risk stratification of such models. Methods We used the Individualized Coherent Absolute Risk Estimator (iCARE) tool for risk model building and validation to incorporate density to a previously validated literature-based model with questionnaire-based risk factors and a 313-variant polygenic risk score (PRS).

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) are lymphoid formations that develop in non-lymphoid tissues during chronic inflammation, autoimmune diseases, and cancer. Accurate identification and quantification of TLS in tissue can provide crucial insights into the immune response of several disease processes including antitumor immune response. TLS are defined as aggregates of T cells, B cells and dendritic cells.

View Article and Find Full Text PDF

Brain functional connectivity patterns exhibit distinctive, individualized characteristics capable of distinguishing one individual from others, like fingerprint. Accurate and reliable depiction of individualized functional connectivity patterns during infancy is crucial for advancing our understanding of individual uniqueness and variability of the intrinsic functional architecture during dynamic early brain development, as well as its role in neurodevelopmental disorders. However, the highly dynamic and rapidly developing nature of the infant brain presents significant challenges in capturing robust and stable functional fingerprint, resulting in low accuracy in individual identification over ages during infancy using functional connectivity.

View Article and Find Full Text PDF

The 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) family of proteins are bifunctional enzymes that are of clinical relevance because of their roles in regulating glycolysis in insulin sensitive tissues and cancer. Here, we sought to express recombinant PFKFB2 and develop a robust protocol to measure its kinase activity. These studies resulted in the unexpected finding that bacterially expressed PFKFB2 is phosphorylated on Ser483 but is not a result of autophosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!