MiR-125b-5p modulates the function of regulatory T cells in tumor microenvironment by targeting TNFR2.

J Immunother Cancer

Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China

Published: November 2022

Background: Tumor necrosis factor receptor type 2 (TNFR2) is primarily expressed by CD4FoxP3 regulatory T cells (Tregs), especially those present in tumor microenvironment. There is compelling evidence that TNFR2 plays a crucial role in the activation, expansion, and phenotypic stability of Tregs and promotes tumor immune evasion. Understanding of epigenetic regulation of TNFR2 expression in Tregs may help device a novel strategy in cancer immunotherapy.

Methods: MiR-125b-5p-overexpressing or knockdown murine CD4 T cells and Tregs were constructed, and the effect of miR-125b-5p on Tregs proliferation, suppressive function and TNFR2 expression were examined. In vivo antitumor efficacy of Ago-125b-5p (miR-125b-5p agomir) was evaluated in MC38 tumor bearing mice, and tumor-infiltrating Tregs and CD8 cytotoxic T lymphocytes (CTLs) were analyzed. RNA-seq analysis was applied to reveal the genes and signaling pathways regulated by miR-125b-5p in Tregs.

Results: In this study, we found that TNFR2 was a direct target of miR-125b-5p. Overexpression of miR-125b-5p decreased the proportion of Tregs and their expression of TNFR2 and consequently inhibited its proliferation and suppressive function by regulating the metabolism-related signaling pathways. Moreover, in colon cancer bearing mice, the administration of Ago-125b-5p markedly inhibited the tumor growth, which was associated with reduction of Tregs and increase of IFNγCD8 T cells in tumor environment. Furthermore, in human colon adenocarcinoma patients, we verified that miR-125b-5p expression was downregulated, and low levels of miR-125b-5p were associated with poor prognosis. Interestingly, the expression of miR-125b-5p and TNFR2 were negatively correlated.

Conclusions: Our study for the first time found that the expression of TNFR2 by Tregs was regulated by miR-125b-5p. Our results showed that miR-125b-5p had the capacity to inhibit the expression of TNFR2 and immunosuppressive activity of Tregs and consequently enhanced the antitumor efficacy. This property of miR-125b-5p may be therapeutically harnessed in the treatment of human cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628696PMC
http://dx.doi.org/10.1136/jitc-2022-005241DOI Listing

Publication Analysis

Top Keywords

mir-125b-5p
12
expression tnfr2
12
tnfr2
10
tregs
10
regulatory cells
8
cells tumor
8
tumor microenvironment
8
cells tregs
8
tnfr2 expression
8
proliferation suppressive
8

Similar Publications

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Osteoarthritis (OA), particularly in the knee and hip, poses a significant global health challenge due to limited therapeutic options. To elucidate the molecular mechanisms of OA and identify potential biomarkers and therapeutic targets, we utilized genome-wide association studies (GWAS) and cis-miRNA expression quantitative trait loci (cis-miR-eQTL) datasets to identify miRNAs associated with OA, revealing 16 that were linked to knee OA and 21 to hip OA. Among these, hsa-miR-1303 was significantly upregulated in both knee and hip OA (IVW: = 6.

View Article and Find Full Text PDF

Role of miR-125b-5p in modulating placental SIRT7 expression and its implications for lipid metabolism in gestational diabetes.

J Reprod Immunol

December 2024

Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India. Electronic address:

Gestational diabetes is marked impaired glucose tolerance, poses various adverse outcomes including increased BMI and obesity. These outcomes results from excess lipid accumulation which is marked by elevated triglycerides. In GDM, placenta exhibits altered lipid metabolism, including reduced fatty acid oxidation and increased triglyceride accumulation.

View Article and Find Full Text PDF

Objective: To evaluate the characteristics of the circulating microRNA expression profiles in patients with osteoporosis.

Methods: A systematic literature search was performed using the Web of Science, PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP, and WANFANG databases from inception until 1 March 2024. The search strategy employed keywords, encompassing "osteoporosis", "bone loss", or "osteopenia" and "miRNA" or "microRNA".

View Article and Find Full Text PDF

Theabrownin (TB), the primary pigment in Pu-erh tea, has shown potential in alleviating metabolic syndrome (MS), though its precise mechanisms remain unclear. This study investigated the effects of Pu-erh tea water extract (WE) and TB on high-fat diet (HFD)-induced MS in rats, focusing on miRNA regulation and gut microbiota composition. Both WE and TB significantly improved markers of MS, including dyslipidemia, insulin resistance, and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!