Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We develop the scale transformed power prior for settings where historical and current data involve different data types, such as binary and continuous data. This situation arises often in clinical trials, for example, when historical data involve binary responses and the current data involve some other type of continuous or discrete outcome. The power prior, proposed by Ibrahim and Chen, does not address the issue of different data types. Herein, we develop a new type of power prior, which we call the scale transformed power prior (straPP). The straPP is constructed by transforming the power prior for the historical data by rescaling the parameter using a function of the Fisher information matrices for the historical and current data models, thereby shifting the scale of the parameter vector from that of the historical to that of the current data. Examples are presented to motivate the need for such a transformation, and simulation studies are presented to illustrate the performance advantages of the straPP over the power prior and other informative and noninformative priors. A real dataset from a clinical trial undertaken to study a novel transitional care model for stroke survivors is used to illustrate the methodology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789178 | PMC |
http://dx.doi.org/10.1002/sim.9598 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!