A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Eutectic Solvent-Enabled Plasmonic Nanocellulose Aerogel: On-Demand Three-Dimensional (3D) SERS Hotspot Based on Collapsing Mechanism. | LitMetric

Exceptional surface enhanced Raman scattering (SERS) can be achieved by on-demand mechanisms mediated by the formation of three-dimensional (3D) network supporting hotspots. Herein, a deep eutectic solvent (DES) is used to fabricate plasmonic aerogels as sustainable SERS substrates consisting of different gold nanoparticle (AuNP) heterostructures synthesized in the presence of cellulose nanocrystals (CNCs). This analytical approach is based on the AuNPs 3D arrangement within the CNC matrix, where the transient inter-CNCs interactions collapse after loading with the analyte aqueous solution, forming hotspots on demand. Theoretical calculations support the on-demand SERS mechanism, which consists of the hotspot formation by bringing the AuNPs closer upon activation with the liquid sample loading. To evaluate the plasmonic aerogel performance as a sensing platform, the organophosphorus pesticides edifenphos and parathion were tested in rice and tea extracts. Also, the detection of Methylene Blue in fish muscle extract resulted in a detection limit of 9.8 nM. The results demonstrate that the 3D plasmonic aerogel exhibits significantly higher SERS enhancement and sensitivity when compared to conventional 2D SERS substrates. The use of a green designer solvent, biobased ingredients, and the introduction of on-demand SERS-based sensing pave the way for further developments in the analysis of liquid samples within a sustainable framework.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c03964DOI Listing

Publication Analysis

Top Keywords

deep eutectic
8
sers substrates
8
plasmonic aerogel
8
sers
6
eutectic solvent-enabled
4
plasmonic
4
solvent-enabled plasmonic
4
plasmonic nanocellulose
4
nanocellulose aerogel
4
on-demand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!