Synapses are bridges for information transmission in the central nervous system (CNS), and synaptic plasticity is fundamental for the normal function of synapses, contributing substantially to learning and memory. Numerous studies have proven that microglia can participate in the occurrence and progression of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), by regulating synaptic plasticity. In this review, we summarize the main characteristics of synapses and synaptic plasticity under physiological and pathological conditions. We elaborate the origin and development of microglia and the two well-known microglial signaling pathways that regulate synaptic plasticity. We also highlight the unique role of triggering receptor expressed on myeloid cells 2 (TREM2) in microglia-mediated regulation of synaptic plasticity and its relationship with AD. Finally, we propose four possible ways in which TREM2 is involved in regulating synaptic plasticity. This review will help researchers understand how NDDs develop from the perspective of synaptic plasticity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-022-03100-1 | DOI Listing |
Cytotechnology
February 2025
Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India.
Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pediatrics and Department of Developmental Biology, University of Pittsburgh, Pittsburgh, USA.
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease associated with microcephaly and poor neurodevelopmental outcomes. Here we show that the Ohia HLHS mouse model, with mutations in Sap130, a chromatin modifier, and Pcdha9, a cell adhesion protein, also exhibits microcephaly associated with mitotic block and increased apoptosis leading to impaired cortical neurogenesis. Transcriptome profiling, DNA methylation, and Sap130 ChIPseq analyses all demonstrate dysregulation of genes associated with autism and cognitive impairment.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan.
Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, No.16, Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, 100700, China.
Following prolonged exposure to hypoxic conditions, for example, due to ascent to high altitude, aging or stroke, cognitive deficits can develop. The exact nature and genesis of hypoxia-induced cognitive deficits remain unresolved. Curcumin has been reported to stimulate neurogenesis and reduce neuronal degeneration.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!