Photocatalytic dye degradation and antibacterial activities of CeO/g-CN nanomaterials for environmental applications.

Environ Sci Pollut Res Int

Department of Physics, School of Engineering and Technology, Central University of Haryana, Mahendergarh, 123031, Haryana, India.

Published: September 2023

The uncontrolled dumping of synthetic dyes into water sources has posed severe hazards to the ecosystem. For decades, several materials with low cost and high efficiency have been investigated for dye degradation. Photocatalytic degradation is regarded as a successful strategy since it utilizes sunlight to transform harmful pollutants into nontoxic compounds without using oxidative agents. The photocatalytic potentials of CeO/g-CN (CG) were investigated in this work using a simplistic ultrasonication process. Here, the amount of CeO was fixed, and g-CN was varied in the ratio (1:x, where x = 1, 2, and 3) and abbreviated as CG1, CG2, and CG3. Characterization techniques such as Fourier transforms-infrared spectroscopy, thermal gravimetric analysis (TGA), powdered X-ray diffraction, ultraviolet-visible spectroscopy, etc. were used to characterize structural analysis, optical properties, particle size, and chemical bonds of the prepared nanocomposites. The photocatalytic results showed that CG2 effectively degraded rose bengal (RB) and crystal violet (CV) dyes when exposed to visible light irradiation as compared to pure GCN and CeO. The antibacterial activity analysis further supported the potential application of prepared photocatalyst as a disinfectant agent against both gram-positive (Staphylococcus aureus and Bacillus cereus) and gram-negative (Salmonella abony and Escherichia coli) pathogenic strains of bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-23815-xDOI Listing

Publication Analysis

Top Keywords

dye degradation
8
photocatalytic
4
photocatalytic dye
4
degradation antibacterial
4
antibacterial activities
4
activities ceo/g-cn
4
ceo/g-cn nanomaterials
4
nanomaterials environmental
4
environmental applications
4
applications uncontrolled
4

Similar Publications

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.

View Article and Find Full Text PDF

In recent years, global trends indicate consumer interest in functional foods. Thus, there is a trend to replace the use of artificial colors with natural colors that, in addition to being attractive to consumers, provide benefits to the biological functions of the human organism. The objective of this research was the solvent extraction of a natural dye from the roselle flower, its identification and evaluation of its behavior at different pH and temperatures.

View Article and Find Full Text PDF

A Multifunctional MIL-101-NH(Fe) Nanoplatform for Synergistic Melanoma Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.

Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.

Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).

View Article and Find Full Text PDF

The contamination of water with dyes stemming from the discharge of industrial waste poses significant environmental risks and health concerns. In this study, the phytoremediation potential of the wetland plant was investigated (as a function of plant biomass, pH, contact time, and initial dye concentration) for the removal of methylene blue and methyl red dyes from wastewater. The experimental adsorption capacities under the optimum conditions were found to be 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!