and are the causal agents of bacterial spot disease of tomato and pepper, endemic to the Southeastern United States. Although very closely related, the two bacterial species differ in host specificity, where is the dominant pathogen of tomato and that of pepper. This is in part due to the activity of avirulence proteins that are secreted by strains and elicit effector-triggered immunity in pepper leaves, thereby restricting pathogen growth. In recent years, the emergence of several pepper-pathogenic lineages has revealed variability within the bacterial species to multiply and cause disease in pepper, even in the absence of avirulence gene activity. Here, we investigated the basal evolutionary processes underlying the host range of this species using multiple genome-wide association analyses. Surprisingly, we identified two novel gene candidates that were significantly associated with pepper-pathogenic and Both candidates were predicted to be involved in the transport/acquisition of nutrients common to the plant cell wall or apoplast and included a TonB-dependent receptor, which was disrupted through independent mutations within the lineage. The other included a symporter of protons/glutamate, , enriched with pepper-associated mutations near the promoter and start codon of the gene. Functional analysis of these candidates revealed that only the TonB-dependent receptor had a minor effect on the symptom development and growth of in pepper leaves, indicating that pathogenicity to this host might have evolved independently within the bacterial species and is likely a complex, multigenic trait.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-08-22-0294-R | DOI Listing |
Mar Biotechnol (NY)
January 2025
College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware, Lewes, DE, 19958, USA.
Application of algicides produced by naturally occurring bacteria is considered an environmentally friendly approach to control harmful algal blooms. However, few studies assess the effects of bacterial algicides on non-target species, either independently or with other stressors. Here, we measured sub-lethal effects of dinoflagellate-specific algicide IRI-160AA on the estuarine fish Fundulus heteroclitus and Menidia menidia in laboratory experiments.
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA.
Unlabelled: Rapid and accurate identification of cultured molds is important to determine clinical significance and therapeutic decision-making. Conventional mold identification uses phenotypic macroscopic and microscopic characterization; however, this can take days or weeks for colony maturity and definitive microscopic structure formation, be limited to genus-level identification, and be misidentified due to morphologic mimics or similarities between closely related species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revolutionized bacterial and yeast identification but remains uncommon for molds in part because of limited reference libraries.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China.
Unlabelled: Chickens are one of the most economically important poultry species, and their egg-laying performance is a crucial economic trait. The intestinal microbiome plays a significant role in the egg-laying performance. To clarify the diversity of chicken intestinal microbiota and its connection to egg-laying performance, this study utilized 16S rRNA sequencing technology to characterize the intestinal microbiomes of 101 chickens from 13 breeds with varying levels of egg production.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.
View Article and Find Full Text PDFBiochemistry
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States.
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!