Dimer optical antennas (OAs) enable great fluorescence enhancement and excitation volume reduction and hence potentially can be a very useful tool for single-molecule detection. The realization of broadband fluorescence enhancement with a dimer OA remains an essential step for its usage in multi-color single-molecule fluorescence (SMF) detection. Although silver dimer OAs have been shown to be able to yield broadband fluorescence enhancement over the visible spectrum, they are amenable to oxidization, hard to functionalize, and could cause cytotoxicity. To overcome these limitations, in this work, we took advantage of nano-sized silver due to its optical properties and gold due to its chemical properties and developed an ameliorated Ag@Au dimer OA in terms of its overall performance. The Ag@Au nanoparticle in the dimer OA contains a 70 nm silver core and an ultra-thin (∼1-5 nm) gold shell which play a key role in its optical responses. Furthermore, we employed three typical dyes, , FAM, TAMRA and Cy5, representing the blue, yellow and red ranges, respectively, and characterized their single-molecule fluorescence enhancements in the presence of Au or Ag@Au OAs. Our results indicate that, in contrast to its Au counterpart, the Ag@Au dimer OA prepared here can greatly improve its optical response in the blue range and eventually achieve broadband fluorescence enhancement throughout almost the whole visible spectral range. Meanwhile, it also maintains good chemical stability and accessibility to functionalization. Such Ag@Au dimer OAs are thus expected to have many important applications in the future, including single-molecule sequencing and multi-color biosensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr03466b | DOI Listing |
Food Chem
December 2024
Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China. Electronic address:
A novel biomimetic molecular imprinted polymer chip with fluorescence (FL) and structural (STR) states, inspired by color patterns of chameleon skin, is fabricated for detecting diethylstilbestrol (DES). The chip features a regularly structured, non-closed-packed (NCP) colloidal photonic crystal (CPC) lattice made monodisperse MIP spheres containing fluorescence poly ionic liquid (FPIL) pigments. The FL color originates from FPIL pigments and is further enhanced by the Purcell effect, while the STR color results from the periodic arrangement of the NCP CPC structure.
View Article and Find Full Text PDFACS Sens
December 2024
UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
Diverse analytical techniques are employed to scrutinize microplastics (MPs)─pervasive at hazardous concentrations across diverse sources ranging from water reservoirs to consumable substances. The limitations inherent in existing methods, such as their diminished detection capacities, render them inadequate for analyzing MPs of diminutive dimensions (microplastics: 1-5 μm; nanoplastics: < 1 μm). Consequently, there is an imperative need to devise methodologies that afford improved sensitivity and lower detection limits for analyzing these pollutants.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Department of Chemistry, University of Ghana, Legon-Accra P.O. Box LG56, Ghana.
Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria.
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!