AI Article Synopsis

  • The Mycoplasma synoviae live attenuated vaccine strain MS-H (Vaxsafe MS) is widely used globally to protect chickens from chronic M. synoviae infections and reduce economic losses in the poultry industry.
  • MS-H, developed through chemical mutagenesis of a virulent strain, has 32 single nucleotide variations compared to its original strain, with questions remaining about the stability of these mutations during vaccine production and after vaccination.
  • A study of 11 laboratory passages and 138 bird reisolates identified 254 sequence variations in the MS-H genome, revealing that certain regions may be more prone to mutations, although the overall occurrence of significant mutations remains infrequent.

Article Abstract

The Mycoplasma synoviae live attenuated vaccine strain MS-H (Vaxsafe MS; Bioproperties Pty., Ltd., Australia) is commonly used around the world to prevent chronic infections caused by M. synoviae in birds and to minimize economic losses in the poultry industry. MS-H is a temperature-sensitive strain that is generated via the chemical mutagenesis of a virulent M. synoviae isolate, 86079/7NS. 32 single nucleotide polymorphisms have been found in the genome of MS-H compared to that of 86079/7NS, including 25 in predicted coding sequences (CDSs). There is limited information on the stability of these mutations in MS-H during the propagation of the vaccine manufacturing process or after the vaccination of chickens. Here, we performed a comparative analysis of MS-H genomes after and passages under different circumstances. Studying the dynamics of the MS-H population can provide insights into the factors that potentially affect the health of vaccinated birds. The genomes of 11 laboratory passages and 138 MS-H bird reisolates contained a total of 254 sequence variations. Of these, 39 variations associated with CDSs were detected in more than one genome (range = 2 to 62, median = 2.5), suggesting that these sequences are particularly prone to mutations. From the 25 CDSs containing previously characterized variations between MS-H and 86079/7NS, 7 were identified in the MS-H reisolates and progenies examined here. In conclusion, the MS-H genome contains individual regions that are prone to mutations that enable the restoration of the genotype or the phenotype of wild-type 86079/7NS in those regions. However, accumulated mutations in these regions are rare. Preventative measures, such as vaccination, are commonly used for the control of mycoplasmal infections in poultry. A live attenuated vaccine strain (Vaxsafe MS; MS-H; Bioproperties Pty. Ltd., Australia) is used for the prevention of disease caused by M. synoviae in many countries. However, information on the stability of previously characterized mutations in the MS-H genome is limited. In this study, we performed a comparative analysis of the whole-genome sequences of MS-H seeds used for vaccine manufacturing, commercial batches of the vaccine, cultures minimally passaged under small-scale laboratory and large-scale manufacturing conditions, MS-H reisolated from specific-pathogen-free (SPF) chickens that were vaccinated under controlled conditions, and MS-H reisolated from vaccinated commercial poultry flocks around the world. This study provides a comprehensive assessment of genome stability in MS-H after and passages under different circumstances and suggests that most of the mutations in the attenuated MS-H vaccine strain are stable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769879PMC
http://dx.doi.org/10.1128/spectrum.02845-22DOI Listing

Publication Analysis

Top Keywords

ms-h
17
live attenuated
12
vaccine strain
12
attenuated vaccine
8
bioproperties pty
8
pty australia
8
caused synoviae
8
mutations ms-h
8
vaccine manufacturing
8
performed comparative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!