-Aminobenzoic Acid Biosynthesis Is Required for Listeria monocytogenes Growth and Pathogenesis.

Infect Immun

Department of Molecular and Cell Biology, University of California, Berkeleygrid.47840.3f, Berkeley, California, USA.

Published: November 2022

Biosyntheses of -aminobenzoic acid (PABA) and its downstream folic acid metabolites are essential for one-carbon metabolism in all life forms and the targets of sulfonamide and trimethoprim antibiotics. In this study, we identified and characterized two genes ( and ) required for PABA biosynthesis in Listeria monocytogenes. Mutants in PABA biosynthesis were able to grow normally in rich media but not in defined media lacking PABA, but growth was restored by the addition of PABA or its downstream metabolites. PABA biosynthesis mutants were attenuated for intracellular growth in bone marrow-derived macrophages, produced extremely small plaques in fibroblast monolayers, and were highly attenuated for virulence in mice. PABA biosynthesis genes were upregulated upon infection and induced during growth in broth in a strain in which the master virulence regulator, PrfA, was genetically locked in its active state (PrfA*). To gain further insight into why PABA mutants were so attenuated, we screened for transposon-induced suppressor mutations that formed larger plaques. Suppressor mutants in , which are predicted to have higher levels of (p)ppGpp, and mutants in , which is a GTP-binding repressor of many biosynthetic genes, partially rescued the plaque defect but, notably, restored the capacity of the mutants to escape from phagosomes and induce the polymerization of host cell actin. However, these suppressor mutant strains remained attenuated for virulence in mice. These data suggest that even though folic acid metabolites exist in host cells and might be available during infection, synthesis of PABA is required for L. monocytogenes pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670987PMC
http://dx.doi.org/10.1128/iai.00207-22DOI Listing

Publication Analysis

Top Keywords

paba biosynthesis
16
paba
9
-aminobenzoic acid
8
listeria monocytogenes
8
paba downstream
8
folic acid
8
acid metabolites
8
mutants attenuated
8
attenuated virulence
8
virulence mice
8

Similar Publications

Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels.

View Article and Find Full Text PDF

Background: Folate is an important one-carbon cycle donor involved in the synthesis of purines, thymine, pantothenic acid, serine and glycine. The present study aimed to explore the capacity of Lactiplantibacillus plantarum subsp. plantarum (L.

View Article and Find Full Text PDF

A new series of 2-amino-1,4-naphthoquinone-benzamides 5a-n was designed based on previously reported potent cytotoxic agents. These compounds were synthesized from the reaction of 1,4-naphthoquinone, 4-aminobenzoic acid, and appropriate amine derivatives in good yields. Cytotoxic activities of the target compounds 5a-n were evaluated against three cancer cell lines MDA-MB-231, SUIT-2, and HT-29 by MTT assay and the obtained in vitro data.

View Article and Find Full Text PDF

Background: Ceratocystis fimbriata is a fungal pathogen that infects sweet potato roots, producing enormous economic losses. Cyclic polyhydroxy compound quinic acid is a common metabolite synthesized in plant tissues, including sweet potato tubers, showing weak antifungal properties. Although several O-acylated quinic acid derivatives have been synthesized and found in nature and their antifungal properties have been explored, derivatives based on modification of the carboxylic acid have never been evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • * CADD utilizes its own amino acids (tyrosine and lysine) and operates with a unique Fe/Mn cofactor instead of the typical iron cofactor found in similar enzymes, impacting its mechanism of action.
  • * Advanced studies reveal how CADD's structure and active-site variants affect its metal ion preferences, indicating that a transient tyrosine radical is involved in initiating pABA synthesis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!